IDEAS home Printed from https://ideas.repec.org/p/col/000495/014564.html
   My bibliography  Save this paper

Uso de los estimadores HC en presencia de heterocedasticidad multiplicativa

Author

Listed:
  • Andres Felipe Hoyos Martin

Abstract

Este trabajo muestra el uso de los tipos de matrices de covarianza consistentes de heterocedasticidad (HCCM, por sus siglas en ingles) o estimadores HC, en presencia de diferentes niveles de heterocedasticidad multiplicativa y diferentes tamanos de muestra. Además se analiza el comportamiento de estas con diferentes tipos de distribución de la variable independiente. Se realiza una simulación de Monte Carlo para observar el poder y el tamano de la pruebas en la inferencia sobre el parámetro estimado que acompana la variable independiente del modelo. Se encuentra que en presencia de niveles bajos de heterocedasticidad y muestras pequenas, las pruebas pierden poder aunque se observa de manera general que la corrección HC3, es la mejor comportada.

Suggested Citation

  • Andres Felipe Hoyos Martin, 2015. "Uso de los estimadores HC en presencia de heterocedasticidad multiplicativa," Icesi Economics Working Papers 14564, Universidad Icesi.
  • Handle: RePEc:col:000495:014564
    as

    Download full text from publisher

    File URL: http://www.icesi.edu.co/departamentos/economia/images/IEWP/Icesi%20EWP%202015-2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    2. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    3. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    4. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    5. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    6. Godfrey, Leslie G., 1978. "Testing for multiplicative heteroskedasticity," Journal of Econometrics, Elsevier, vol. 8(2), pages 227-236, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    2. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    3. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    4. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    5. LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    6. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    7. José Murteira & Esmeralda Ramalho & Joaquim Ramalho, 2013. "Heteroskedasticity testing through a comparison of Wald statistics," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 131-160, August.
    8. Chau, K.W. & Davies, Stephen N.G. & Lai, Lawrence W.C. & Lennon, H.T. Choy, 2023. "Museums for ex situ tangible heritage conservation: A neo-institutional analytical and empirical economic analysis," Land Use Policy, Elsevier, vol. 127(C).
    9. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5, July-Dece.
    10. Julie Le Gallo, 2000. "Spatial econometrics (2, Spatial heterogeneity) [Econométrie spatiale (2, Hétérogénéité spatiale)]," Working Papers hal-01526969, HAL.
    11. Dastoor, Naorayex K., 1997. "Testing for conditional heteroskedasticity with misspecified alternative hypotheses," Journal of Econometrics, Elsevier, vol. 82(1), pages 63-80.
    12. Reşit Çelik, 2017. "A new test to detect monotonic and non-monotonic types of heteroscedasticity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 342-361, January.
    13. Grammenos, Costas Th. & Papapostolou, Nikos C., 2012. "US shipping initial public offerings: Do prospectus and market information matter?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 276-295.
    14. Luc Anselin, 1988. "Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches," International Regional Science Review, , vol. 11(3), pages 279-316, December.
    15. Stern, David I. & Gerlagh, Reyer & Burke, Paul J., 2017. "Modeling the emissions–income relationship using long-run growth rates," Environment and Development Economics, Cambridge University Press, vol. 22(6), pages 699-724, December.
    16. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    17. Psaradakis, Zacharias & Sola, Martin, 1996. "On the power of tests for superexogeneity and structural invariance," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 151-175.
    18. Katarzyna Jabłońska, 2018. "Dealing With Heteroskedasticity Within The Modeling Of The Quality Of Life Of Older People," Statistics in Transition New Series, Polish Statistical Association, vol. 19(3), pages 423-452, September.
    19. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    20. Russell, Bill & Chowdhury, Rosen Azad, 2013. "Estimating United States Phillips curves with expectations consistent with the statistical process of inflation," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 24-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000495:014564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Coordinador ICESI (email available below). General contact details of provider: https://edirc.repec.org/data/deiceco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.