IDEAS home Printed from https://ideas.repec.org/p/cmu/gsiawp/860735799.html
   My bibliography  Save this paper

A User''s Guide to Solving Dynamic Stochastic Games Using the Homotopy Method

Author

Listed:

Abstract

This paper provides a step-by-step guide to solving dynamic stochastic games using the homotopy method. The homotopy method facilitates exploring the equilibrium correspondence in a systematic fashion; it is especially useful in games that have multiple equilibria. We discuss the theory of the homotopy method and its implementation and present two detailed examples of dynamic stochastic games that are solved using this method.

Suggested Citation

  • Ron N. Borkovsky & Ulrich Doraszelski & Yaroslav Kryukov, "undated". "A User''s Guide to Solving Dynamic Stochastic Games Using the Homotopy Method," GSIA Working Papers 2009-E23, Carnegie Mellon University, Tepper School of Business.
  • Handle: RePEc:cmu:gsiawp:860735799
    as

    Download full text from publisher

    File URL: http://www.andrew.cmu.edu/user/kryukov/HomotopyGuide.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Besanko & Ulrich Doraszelski, 2004. "Capacity Dynamics and Endogenous Asymmetries in Firm Size," RAND Journal of Economics, The RAND Corporation, vol. 35(1), pages 23-49, Spring.
    2. Ariel Pakes & Paul McGuire, 1994. "Computing Markov-Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model," RAND Journal of Economics, The RAND Corporation, vol. 25(4), pages 555-589, Winter.
    3. Bajari, Patrick & Hong, Han & Krainer, John & Nekipelov, Denis, 2010. "Estimating Static Models of Strategic Interactions," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 469-482.
    4. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    5. M. Ali Khan, 2007. "Perfect Competition," PIDE-Working Papers 2007:15, Pakistan Institute of Development Economics.
    6. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    7. By Kenneth L. Judd & Karl Schmedders & Şevin Yeltekin, 2012. "Optimal Rules For Patent Races," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(1), pages 23-52, February.
    8. Pakes, Ariel & McGuire, Paul, 2001. "Stochastic Algorithms, Symmetric Markov Perfect Equilibrium, and the 'Curse' of Dimensionality," Econometrica, Econometric Society, vol. 69(5), pages 1261-1281, September.
    9. David Besanko & Ulrich Doraszelski, 2005. "Learning-by-Doing, Organizational Forgetting, and Industry Dynanmics," Computing in Economics and Finance 2005 236, Society for Computational Economics.
    10. Karl Schmedders & Ken Judd, 2005. "A Computational Approach to Proving Uniqueness in Dynamic Games," Computing in Economics and Finance 2005 412, Society for Computational Economics.
    11. Richard Ericson & Ariel Pakes, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 53-82.
    12. Patrick Bajari & Han Hong & Stephen P. Ryan, 2010. "Identification and Estimation of a Discrete Game of Complete Information," Econometrica, Econometric Society, vol. 78(5), pages 1529-1568, September.
    13. Martin Pesendorfer & Philipp Schmidt-Dengler, 2003. "Identification and Estimation of Dynamic Games," NBER Working Papers 9726, National Bureau of Economic Research, Inc.
    14. Ariel Pakes & Michael Ostrovsky & Steven Berry, 2007. "Simple estimators for the parameters of discrete dynamic games (with entry/exit examples)," RAND Journal of Economics, RAND Corporation, vol. 38(2), pages 373-399, June.
    15. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.
    16. Schmedders, Karl, 1998. "Computing equilibria in the general equilibrium model with incomplete asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1375-1401, August.
    17. Doraszelski, Ulrich & Satterthwaite, Mark, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," CEPR Discussion Papers 6212, C.E.P.R. Discussion Papers.
    18. Eaves, B. Curtis & Schmedders, Karl, 1999. "General equilibrium models and homotopy methods," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1249-1279, September.
    19. Caplin, Andrew & Nalebuff, Barry, 1991. "Aggregation and Imperfect Competition: On the Existence of Equilibrium," Econometrica, Econometric Society, vol. 59(1), pages 25-59, January.
    20. David Besanko & Ulrich Doraszelski & Yaroslav Kryukov & Mark Satterthwaite, 2007. "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics," Levine's Bibliography 321307000000000903, UCLA Department of Economics.
    21. C. B. Garcia & W. I. Zangwill, 1979. "An Approach to Homotopy and Degree Theory," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 390-405, November.
    22. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    23. Steven Berry & Ariel Pakes, 2007. "The Pure Characteristics Demand Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1193-1225, November.
    24. McKelvey, Richard D. & McLennan, Andrew, 1996. "Computation of equilibria in finite games," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 2, pages 87-142, Elsevier.
    25. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doraszelski, Ulrich & Kryukov, Yaroslav & Borkovsky, Ron N., 2008. "A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method," CEPR Discussion Papers 6733, C.E.P.R. Discussion Papers.
    2. Weintraub, Gabriel Y. & Benkard, C. Lanier & Van Roy, Benjamin, 2007. "Computational Methods for Oblivious Equilibrium," Research Papers 1969, Stanford University, Graduate School of Business.
    3. Weintraub, Gabriel Y. & Benkard, C. Lanier & Van Roy, Benjamin, 2007. "Markov Perfect Industry Dynamics with Many Firms," Research Papers 1919r, Stanford University, Graduate School of Business.
    4. Ron N. Borkovsky & Ulrich Doraszelski & Yaroslav Kryukov, 2010. "A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method," Operations Research, INFORMS, vol. 58(4-part-2), pages 1116-1132, August.
    5. Doraszelski, Ulrich & Satterthwaite, Mark, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," CEPR Discussion Papers 6212, C.E.P.R. Discussion Papers.
    6. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.
    7. Ulrich Doraszelski & Kenneth L. Judd, 2012. "Avoiding the curse of dimensionality in dynamic stochastic games," Quantitative Economics, Econometric Society, vol. 3(1), pages 53-93, March.
    8. , & ,, 2010. "A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification," Theoretical Economics, Econometric Society, vol. 5(3), September.
    9. Ron Borkovsky & Ulrich Doraszelski & Yaroslav Kryukov, 2012. "A dynamic quality ladder model with entry and exit: Exploring the equilibrium correspondence using the homotopy method," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 197-229, June.
    10. C. Lanier Benkard & Przemyslaw Jeziorski & Gabriel Y. Weintraub, 2013. "Oblivious Equilibrium for Concentrated Industries," NBER Working Papers 19307, National Bureau of Economic Research, Inc.
    11. Ulrich Doraszelski & Mark Satterthwaite, 2010. "Computable Markov‐perfect industry dynamics," RAND Journal of Economics, RAND Corporation, vol. 41(2), pages 215-243, June.
    12. David Besanko & Ulrich Doraszelski, 2005. "Learning-by-Doing, Organizational Forgetting, and Industry Dynanmics," Computing in Economics and Finance 2005 236, Society for Computational Economics.
    13. David Besanko & Ulrich Doraszelski & Yaroslav Kryukov & Mark Satterthwaite, 2007. "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics," Levine's Bibliography 321307000000000903, UCLA Department of Economics.
    14. C. Lanier Benkard & Benjamin Van Roy & Gabriel Y. Weintraub, 2005. "Markov perfect industry dynamics with many firms," Working Paper Series 2005-23, Federal Reserve Bank of San Francisco.
    15. C. Lanier Benkard & Przemyslaw Jeziorski & Gabriel Y. Weintraub, 2015. "Oblivious equilibrium for concentrated industries," RAND Journal of Economics, RAND Corporation, vol. 46(4), pages 671-708, October.
    16. David Besanko & Ulrich Doraszelski & Yaroslav Kryukov & Mark Satterthwaite, 2008. "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics," GSIA Working Papers 2009-E22, Carnegie Mellon University, Tepper School of Business.
    17. Gabriel Weintraub & C. Lanier Benkard & Ben Van Roy, 2005. "Markov Perfect Industry Dynamics with Many Firms," NBER Working Papers 11900, National Bureau of Economic Research, Inc.
    18. Joao Macieira, 2010. "Oblivious Equilibrium in Dynamic Discrete Games," 2010 Meeting Papers 680, Society for Economic Dynamics.
    19. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    20. Aamir Rafique Hashmi & Johannes Van Biesebroeck, 2016. "The Relationship between Market Structure and Innovation in Industry Equilibrium: A Case Study of the Global Automobile Industry," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 192-208, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cmu:gsiawp:860735799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Steve Spear (email available below). General contact details of provider: https://www.cmu.edu/tepper .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.