IDEAS home Printed from https://ideas.repec.org/p/cla/levarc/7571.html
   My bibliography  Save this paper

Subjective Uncertainty Over Behavior Strategies: A Correction

Author

Listed:
  • Eddie Dekel
  • Drew Fudenberg
  • David K Levine

Abstract

In order to model the subjective uncertainty of a player over the behavior strategies of an opponent, one must consider the player's beliefs about the opponent's play at information sets that the player thinks have probability zero. This corregendum uses “trembles†to provide a definition of the convex hull of a set of behavior strategies. This corrects a definition we gave in [E. Dekel, D. Fudenberg, and D. K. Levine, 1999, J. Econ. Theory 89, 165–185], which led to two of the solution concepts we defined there not having the properties we intended.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Eddie Dekel & Drew Fudenberg & David K Levine, 2001. "Subjective Uncertainty Over Behavior Strategies: A Correction," Levine's Working Paper Archive 7571, David K. Levine.
  • Handle: RePEc:cla:levarc:7571
    as

    Download full text from publisher

    File URL: http://www.dklevine.com/papers/conhullrev20.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kreps, David M & Wilson, Robert, 1982. "Sequential Equilibria," Econometrica, Econometric Society, vol. 50(4), pages 863-894, July.
    2. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 1999. "Payoff Information and Self-Confirming Equilibrium," Journal of Economic Theory, Elsevier, vol. 89(2), pages 165-185, December.
    3. D. Pearce, 2010. "Rationalizable Strategic Behavior and the Problem of Perfection," Levine's Working Paper Archive 523, David K. Levine.
    4. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    5. Battigalli, Pierpaolo, 1996. "Strategic Independence and Perfect Bayesian Equilibria," Journal of Economic Theory, Elsevier, vol. 70(1), pages 201-234, July.
    6. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, April.
    7. Asheim,G.B. & Perea,A., 2000. "Lexicographic probabilities and rationalizability in extensive games," Memorandum 38/2000, Oslo University, Department of Economics.
    8. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    9. Roger B. Myerson, 1986. "Axiomatic Foundations of Bayesian Decision Theory," Discussion Papers 671, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    10. Blume, Lawrence & Brandenburger, Adam & Dekel, Eddie, 1991. "Lexicographic Probabilities and Equilibrium Refinements," Econometrica, Econometric Society, vol. 59(1), pages 81-98, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schipper, Burkhard C., 2021. "Discovery and equilibrium in games with unawareness," Journal of Economic Theory, Elsevier, vol. 198(C).
    2. Giacomo Bonanno, 2022. "Rational Play in Extensive-Form Games," Games, MDPI, vol. 13(6), pages 1-20, October.
    3. Joseph Greenberg & Sudheer Gupta & Xiao Luo, 2003. "Towering over Babel: Worlds Apart but Acting Together," IEAS Working Paper : academic research 03-A009, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    4. Sheng-Chieh Huang & Xiao Luo, 2008. "Stability, sequential rationality, and subgame consistency," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(2), pages 309-329, February.
    5. Joseph Greenberg & Sudheer Gupta & Xiao Luo, 2009. "Mutually acceptable courses of action," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 91-112, July.
    6. Asheim, Geir B. & Brunnschweiler, Thomas, 2023. "Epistemic foundation of the backward induction paradox," Games and Economic Behavior, Elsevier, vol. 141(C), pages 503-514.
    7. Jagau, Stephan & Perea, Andrés, 2022. "Common belief in rationality in psychological games," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    8. , & ,, 2015. "Rationalizable partition-confirmed equilibrium," Theoretical Economics, Econometric Society, vol. 10(3), September.
    9. Perea, Andrés, 2014. "Belief in the opponentsʼ future rationality," Games and Economic Behavior, Elsevier, vol. 83(C), pages 231-254.
    10. Giacomo Bonanno, 2013. "An epistemic characterization of generalized backward induction," Working Papers 132, University of California, Davis, Department of Economics.
    11. Giacomo Bonanno, 2021. "Rational play in games: A behavioral approach," Working Papers 344, University of California, Davis, Department of Economics.
    12. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    13. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    14. Chlaß, Nadine & Perea, Andrés, 2016. "How do people reason in dynamic games?," VfS Annual Conference 2016 (Augsburg): Demographic Change 145881, Verein für Socialpolitik / German Economic Association.
    15. Iryna Topolyan, 2020. "On Common Belief in Future Rationality in Games with Ambiguous Orderings of Information Sets," Dynamic Games and Applications, Springer, vol. 10(1), pages 183-201, March.
    16. Xiao Luo & Xuewen Qian & Yang Sun, 2021. "The algebraic geometry of perfect and sequential equilibrium: an extension," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 579-601, March.
    17. Rubén Becerril-Borja & Andrés Perea, 2020. "Common belief in future and restricted past rationality," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(3), pages 711-747, September.
    18. Giacomo Bonanno, 2013. "An epistemic characterization of generalized backward induction," Working Papers 60, University of California, Davis, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    2. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2009. "The Refined Best-Response Correspondence and Backward Induction," Levine's Working Paper Archive 814577000000000248, David K. Levine.
    3. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 1999. "Payoff Information and Self-Confirming Equilibrium," Journal of Economic Theory, Elsevier, vol. 89(2), pages 165-185, December.
    4. Battigalli, Pierpaolo & Dufwenberg, Martin, 2009. "Dynamic psychological games," Journal of Economic Theory, Elsevier, vol. 144(1), pages 1-35, January.
    5. Perea, Andres, 2007. "Proper belief revision and equilibrium in dynamic games," Journal of Economic Theory, Elsevier, vol. 136(1), pages 572-586, September.
    6. Balkenborg Dieter & Kuzmics Christoph & Hofbauer Josef, 2019. "The Refined Best Reply Correspondence and Backward Induction," German Economic Review, De Gruyter, vol. 20(1), pages 52-66, February.
    7. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    8. Feinberg, Yossi, 2005. "Subjective reasoning--solutions," Games and Economic Behavior, Elsevier, vol. 52(1), pages 94-132, July.
    9. Perea, Andres, 2002. "A note on the one-deviation property in extensive form games," Games and Economic Behavior, Elsevier, vol. 40(2), pages 322-338, August.
    10. Segal, Uzi & Sobel, Joel, 2007. "Tit for tat: Foundations of preferences for reciprocity in strategic settings," Journal of Economic Theory, Elsevier, vol. 136(1), pages 197-216, September.
    11. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    12. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    13. Asheim, Geir B. & Brunnschweiler, Thomas, 2023. "Epistemic foundation of the backward induction paradox," Games and Economic Behavior, Elsevier, vol. 141(C), pages 503-514.
    14. Battigalli Pierpaolo & Siniscalchi Marciano, 2003. "Rationalization and Incomplete Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 3(1), pages 1-46, June.
    15. Sheng-Chieh Huang & Xiao Luo, 2008. "Stability, sequential rationality, and subgame consistency," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(2), pages 309-329, February.
    16. Perea, Andrés, 2014. "Belief in the opponentsʼ future rationality," Games and Economic Behavior, Elsevier, vol. 83(C), pages 231-254.
    17. Perea ý Monsuwé, A., 2003. "Proper rationalizability and belief revision in dynamic games," Research Memorandum 048, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    18. Xiao Luo & Xuewen Qian & Yang Sun, 2021. "The algebraic geometry of perfect and sequential equilibrium: an extension," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 579-601, March.
    19. Shimoji, Makoto & Watson, Joel, 1998. "Conditional Dominance, Rationalizability, and Game Forms," Journal of Economic Theory, Elsevier, vol. 83(2), pages 161-195, December.
    20. Joseph Greenberg & Sudheer Gupta & Xiao Luo, 2009. "Mutually acceptable courses of action," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 91-112, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levarc:7571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David K. Levine (email available below). General contact details of provider: http://www.dklevine.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.