IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/98s-21.html
   My bibliography  Save this paper

Using a Financial Training Criterion Rather than a Prediction Criterion

Author

Listed:
  • Yoshua Bengio

Abstract

The application of this work is to decision taking with financial time-series, using learning algorithms. The traditional approach is to train a model using a prediction criterion, such as minimizing the squared error between predictions and actual values of a dependent variable, or maximizing the likelihood of a conditional model of the dependent variable. We find here with noisy time-series that better results can be obtained when the model is directly trained in order to maximize the financial criterion of interest, here gains and losses (including those due to transactions) incurred during trading. Experiments were performed on portfolio selection with 35 Canadian stocks Ce rapport présente une application des algorithmes d'apprentissage aux séries chronologiques financières. L'approche traditionnelle est basée sur l'estimation d'un modèle de prédiction, qui minimise par exemple l'erreur quadratique entre les prédictions et les réalisations de la variable à prédire, ou qui maximise la vraisemblance d'un modèle conditionnel de la variable dépendante. Nos résultats sur des séries financières montrent que de meilleurs résultats peuvent être obtenus quand les paramètres du modèles sont plutôt choisis de manière à maximiser le critère financier voulu, ici les profits en tenant compte des pertes attribuables aux transactions. Des expériences réalisées avec 35 titres canadiens sont décrites.

Suggested Citation

  • Yoshua Bengio, 1998. "Using a Financial Training Criterion Rather than a Prediction Criterion," CIRANO Working Papers 98s-21, CIRANO.
  • Handle: RePEc:cir:cirwor:98s-21
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/98s-21.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Non-parametric models; financial decision-taking; artificial neural networks; asset allocation; transaction costs; recurrent neural networks; Modèles non paramétriques; prise de décision financière; réseaux de neurones artificiels; allocation d'actifs; coûts de transaction; réseaux de neurones récurrents;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:98s-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.