Author
Listed:
- Fulvio Ortu
- Pietro Reggiani
- Federico Severino
Abstract
The Federal Reserve holds two main sets of monetary policy meetings, the “Federal Open Market Committee” (FOMC) and the “Board Meetings”, which gather with sixweek and two week cadence respectively. Cieslak, Morse, and Vissing-Jorgensen (2019) show that the cadence of these meetings is associated with cycles of corresponding frequencies in stock markets. These can be fruitfully exploited through a portfolio strategy that invests in the whole market at alternate weeks (the even-week strategy). This simple investment rule is based on the cycles identified empirically but, so far, lacks a theoretical foundation. In this paper, we provide a rigorous framework to detect cycles in the stock market, and to determine optimal portfolio choices which profit from such cycles. We use the filtering approach for stationary time series of Ortu, Severino, Tamoni, and Tebaldi (2020) to isolate uncorrelated components of stock returns that are precisely associated with two- and six-week cycles. Then, we replicate these components using tradable assets from the U.S. market, and design an optimal portfolio strategy that maximizes the investor’s wealth and outperforms the even-week strategy. La Federal Reserve organise deux séries principales de réunions de politique monétaire, le "Federal Open Market Committee" (FOMC) et les "Board Meetings", qui se réunissent avec une cadence de six semaines et de deux semaines respectivement. Cieslak, Morse et Vissing-Jorgensen (2019) montrent que la cadence de ces réunions est associée à des cycles de fréquences correspondantes sur les marchés boursiers. Ceux-ci peuvent être exploités de manière fructueuse par le biais d'une stratégie de portefeuille qui investit dans l'ensemble du marché une semaine sur deux (la stratégie des semaines paires). Cette règle d'investissement simple est basée sur les cycles identifiés empiriquement mais, jusqu'à présent, elle n'a pas de fondement théorique. Dans cet article, nous fournissons un cadre rigoureux pour détecter les cycles sur le marché boursier et pour déterminer les choix de portefeuille optimaux qui profitent de ces cycles. Nous utilisons l'approche de filtrage des séries temporelles stationnaires d'Ortu, Severino, Tamoni et Tebaldi (2020) pour isoler les composantes non corrélées des rendements boursiers qui sont précisément associées aux cycles de deux et six semaines. Ensuite, nous reproduisons ces composantes en utilisant des actifs négociables du marché américain et concevons une stratégie de portefeuille optimale qui maximise la richesse de l'investisseur et surpasse la stratégie des semaines paires.
Suggested Citation
Fulvio Ortu & Pietro Reggiani & Federico Severino, 2024.
"Persistence-based capital allocation along the FOMC cycle,"
CIRANO Working Papers
2024s-02, CIRANO.
Handle:
RePEc:cir:cirwor:2024s-02
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2024s-02. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.