IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2004s-29.html
   My bibliography  Save this paper

Locally Weighted Full Covariance Gaussian Density Estimation

Author

Listed:
  • Yoshua Bengio
  • Pascal Vincent

Abstract

We describe an interesting application of the principle of local learning to density estimation. Locally weighted fitting of a Gaussian with a regularized full covariance matrix yields a density estimator which displays improved behavior in the case where much of the probability mass is concentrated along a low dimensional manifold. While the proposed estimator is not guaranteed to integrate to 1 with a finite sample size, we prove asymptotic convergence to the true density. Experimental results illustrating the advantages of this estimator over classic non-parametric estimators are presented. Nous décrivons une application du principe d'apprentissage local à l'estimation de densité. Le lissage pondéré localement d'une gaussienne utilisant une matrice de covariance pleine et régularisée conduit à un estimateur de densité ayant un comportement amélioré lorsque la masse de probabilité est concentrée le long d'une variété de basse dimension. Même si l'estimateur proposé n'est pas garanti d'intégrer à 1 sur un ensemble de données fini, nous prouvons la convergence asymptotique de la vraie densité. Les résultats expérimentaux illustrant les avantages de cet estimateur sur les estimateurs non paramétriques classiques sont présentés.

Suggested Citation

  • Yoshua Bengio & Pascal Vincent, 2004. "Locally Weighted Full Covariance Gaussian Density Estimation," CIRANO Working Papers 2004s-29, CIRANO.
  • Handle: RePEc:cir:cirwor:2004s-29
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2004s-29.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2004s-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.