IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2003s-23.html
   My bibliography  Save this paper

Stochastic Gradient Descent on a Portfolio Management Training Criterion Using the IPA Gradient Estimator

Author

Listed:
  • Christian Dorion
  • Yoshua Bengio

Abstract

In this paper, we set the basis for learning a multitype assets portfolio management technique relying on no assumptions over the distributions of the financial data. The neural network based model tries to capture patterns in the evolution of the market. Furthermore, the model allows a stochastic perturbation in the asset pricing from the network to avoid local maxima in the decision space. Under those settings, we prove that our investment decision is a Markovian decision process which is Lipschitz continuous almost surely in its parameters. Therefore, the IPA gradient estimator, obtained here by the classical backpropagation algorithm, can be used in a gradient descent procedure to converge to a local maximum of our learning criterion, the Sharpe ratio. Dans cet article, nous jetons les bases pour l'apprentissage d'une stratégie de gestion d'un portefeuille de biens, de natures variées, et ne s'appuyant sur aucune supposition quant aux distributions des données financières. Ce modèle, basé sur l'utilisation d'un réseau de neurones, tente de capturer les tendances du marché. De plus, le modèle permet l'introduction d'un bruit stochastique au niveau des prix prévus par le réseau afin d'éviter les maxima locaux dans l'espace de décision. Dans ces conditions, nous démontrons que notre stratégie d'investissement suit un processus de décision markovien qui est presque sûrement lipchitzien en ses paramètres. Ainsi, l'estimateur du gradient IPA, obtenu ici par la méthode classique de rétropropagation, peut être utilisé pour approcher, par une descente de gradient, un maximum local de notre critère d'apprentissage, le Sharpe ratio.

Suggested Citation

  • Christian Dorion & Yoshua Bengio, 2003. "Stochastic Gradient Descent on a Portfolio Management Training Criterion Using the IPA Gradient Estimator," CIRANO Working Papers 2003s-23, CIRANO.
  • Handle: RePEc:cir:cirwor:2003s-23
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2003s-23.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Learning; portfolio management; IPA estimator; Sharpe ratio; Apprentissage; gestion de portefeuille; estimateur IPA; Sharpe ratio;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2003s-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.