IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2003s-22.html
   My bibliography  Save this paper

No unbiased Estimator of the Variance of K-Fold Cross-Validation

Author

Listed:
  • Yoshua Bengio
  • Yves Grandvalet

Abstract

In statistical machine learning, the standard measure of accuracy for models is the prediction error, i.e. the expected loss on future examples. When the data distribution is unknown, it cannot be computed but several resampling methods, such as K-fold cross-validation can be used to obtain an unbiased estimator of prediction error. However, to compare learning algorithms one needs to also estimate the uncertainty around the cross-validation estimator, which is important because it can be very large. However, the usual variance estimates for means of independent samples cannot be used because of the reuse of the data used to form the cross-validation estimator. The main result of this paper is that there is no universal (distribution independent) unbiased estimator of the variance of the K-fold cross-validation estimator, based only on the empirical results of the error measurements obtained through the cross-validation procedure. The analysis provides a theoretical understanding showing the difficulty of this estimation. These results generalize to other resampling methods, as long as data are reused for training or testing. L'erreur de prédiction, donc la perte attendue sur des données futures, est la mesure standard pour la qualité des modèles d'apprentissage statistique. Quand la distribution des données est inconnue, cette erreur ne peut être calculée mais plusieurs méthodes de rééchantillonnage, comme la validation croisée, peuvent être utilisées pour obtenir un estimateur non-biaisé de l'erreur de prédiction. Cependant pour comparer des algorithmes d'apprentissage, il faut aussi estimer l'incertitude autour de cet estimateur d'erreur future, car cette incertitude peut être très grande. Cependant, les estimateurs ordinaires de variance d'une moyenne pour des échantillons indépendants ne peuvent être utilisés à cause du recoupement des ensembles d'apprentissage utilisés pour effectuer la validation croisée. Le résultat principal de cet article est qu'il n'existe pas d'estimateur non-biaisé universel (indépendant de la distribution) de la variance de la validation croisée, en se basant sur les mesures d'erreur faites durant la validation croisée. L'analyse fournit une meilleure compréhension de la difficulté d'estimer l'incertitude autour de la validation croisée. Ces résultats se généralisent à d'autres méthodes de rééchantillonnage pour lesquelles des données sont réutilisées pour l'apprentissage ou le test.

Suggested Citation

  • Yoshua Bengio & Yves Grandvalet, 2003. "No unbiased Estimator of the Variance of K-Fold Cross-Validation," CIRANO Working Papers 2003s-22, CIRANO.
  • Handle: RePEc:cir:cirwor:2003s-22
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2003s-22.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coraggio, Luca & Coretto, Pietro, 2023. "Selecting the number of clusters, clustering models, and algorithms. A unifying approach based on the quadratic discriminant score," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    2. Liu, Yazhou & Zeng, Jianhui & Qiao, Juncheng & Yang, Guangqing & Liu, Shu'ning & Cao, Weifu, 2023. "An advanced prediction model of shale oil production profile based on source-reservoir assemblages and artificial neural networks," Applied Energy, Elsevier, vol. 333(C).
    3. G. Saharidis & I. Androulakis & M. Ierapetritou, 2011. "Model building using bi-level optimization," Journal of Global Optimization, Springer, vol. 49(1), pages 49-67, January.
    4. Borra, Simone & Di Ciaccio, Agostino, 2010. "Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2976-2989, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2003s-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.