IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2002s-46.html
   My bibliography  Save this paper

Incorporating Second-Order Functional Knowledge for Better Option Pricing

Author

Listed:
  • François Bélisle
  • Yoshua Bengio
  • Charles Dugas
  • René Garcia
  • Claude Nadeau

Abstract

Incorporating prior knowledge of a particular task into the architecture of a learning algorithm can greatly improve generalization performance. We study here a case where we know that the function to be learned is non-decreasing in its two arguments and convex in one of them. For this purpose we propose a class of functions similar to multi-layer neural networks but (1) that has those properties, (2) is a universal approximator of continuous functions with these and other properties. We apply this new class of functions to the task of modeling the price of call options. Experiments show improvements on regressing the price of call options using the new types of function classes that incorporate the a priori constraints. Incorporer une connaissance a priori pour une tache particulière aux algorithmes d'apprentissage peut grandement améliorer leur performance en généralisation. Dans cet article, nous étudions un cas où nous savons que la fonction à apprendre est non-décroissante pour ses deux arguments, et convexe pour l'un d'entre eux. Pour ce cas particulier, nous proposons une classe de fonctions similaires aux réseaux de neurones multi-couches mais (1) avec les propriétés mentionnées plus haut, et (2) est un approximateur universel de fonctions continues avec ces propriétés et avec d'autres. Nous appliquons cette nouvelle classe de fonctions au problème de la modélisation du prix des options d'achat. Nos expériences montrent une amélioration pour la régression sur ces prix d'options d'achat lorsque nous utilisons la nouvelle classe de fonctions qui incorporent les contraintes a priori.

Suggested Citation

  • François Bélisle & Yoshua Bengio & Charles Dugas & René Garcia & Claude Nadeau, 2002. "Incorporating Second-Order Functional Knowledge for Better Option Pricing," CIRANO Working Papers 2002s-46, CIRANO.
  • Handle: RePEc:cir:cirwor:2002s-46
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2002s-46.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2002s-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.