IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2001s-45.html
   My bibliography  Save this paper

The Importance of the Loss Function in Option Pricing

Author

Listed:
  • Peter Christoffersen
  • Kris Jacobs

Abstract

Which loss function should be used when estimating and evaluating option pricing models? Many different fucntions have been suggested, but no standard has emerged. We do not promote a partidular function, but instead emphasize that consistency in the choice of loss functions is crucial. First, for any given model, the loss function used in parameter estimation and model evaluation should be identical, otherwise suboptimal parameter estimates will be obtained. Second, when comparing models, the estimation loss function should be identical across models, otherwise unfair comparisons will be made. We illustrate the importance of these issues in an application of the so-called Practitioner Black-Scholes (PBS) model to S&P500 index options. We find reductions of over 50 percent in the root mean squared error of the PBS model when the estimation and evaluation loss functions are aligned. We also find that the PBS model outperforms a benchmark structural model when the estimation loss functions are identical across models, but otherwise not. The new PBS model with aligned loss functions thus represents a much tougher benchmark against which future structural models can be compared. Quelle fonction de pertes devrait être utilisée pour l'estimation et l'évaluation des modèles d'évaluation d'options? Plusieurs fonctions différentes ont été suggérées,0501s aucune norme ne s'est imposée. Nous ne promouvons aucune fonction,0501s soutenons que la cohérence dans le choix des fonctions est cruciale. Premièrement, pour n'importe quel modèle donné, la fonction de pertes utilisée dans l'estimation des paramètres et dans l'évaluation du modèle devrait être la même, sinon on obtient des estimations de paramètres sous-optimales. Deuxièmement, lors de la comparaison de modèles, la fonction de pertes pour l'estimation devrait être la même pour chaque modèle, autrement les comparaisons sont injustes. Nous illustrons l'importance de ces questions dans une application du modèle appelé Black-Scholes du praticien (PBS) aux options de l'index S&P500. Nous trouvons des réductions de plus de 50 pourcent de la racine de l'erreur quadratique moyenne du modèle PBS lorsque les fonctions de pertes d'estimation et d'évaluation sont alignées. Nous trouvons également que le modèle PBS dépasse un modèle de benchmark structurel quand les fonctions de pertes d'estimation sont identiques pour tous les modèles,0501s pas dans les autres cas. Le nouveau modèle PBS à fonctions de pertes alignées représente dès lors un benchmark bien plus robuste auquel les futurs modèles structurels pourront être comparés.

Suggested Citation

  • Peter Christoffersen & Kris Jacobs, 2001. "The Importance of the Loss Function in Option Pricing," CIRANO Working Papers 2001s-45, CIRANO.
  • Handle: RePEc:cir:cirwor:2001s-45
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2001s-45.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    2. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    2. Haas, Markus & Mittnik, Stefan & Mizrach, Bruce, 2006. "Assessing central bank credibility during the ERM crises: Comparing option and spot market-based forecasts," Journal of Financial Stability, Elsevier, vol. 2(1), pages 28-54, April.
    3. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    4. Bruce Mizrach, 2006. "The Enron Bankruptcy: When did the options market in Enron lose it’s smirk?," Review of Quantitative Finance and Accounting, Springer, vol. 27(4), pages 365-382, December.
    5. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    6. Bruce Mizrach, 2002. "When Did The Smart Money in Enron Lose Its' Smirk?," Departmental Working Papers 200224, Rutgers University, Department of Economics.
    7. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
    8. René Garcia & Richard Luger & Eric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)," CIRANO Working Papers 2001s-02, CIRANO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predicting inflation expectations: A habit-based explanation under hedging," International Review of Financial Analysis, Elsevier, vol. 89(C).
    2. Pedro Pires & João Pedro Pereira & Luís Filipe Martins, 2015. "The Empirical Determinants of Credit Default Swap Spreads: a Quantile Regression Approach," European Financial Management, European Financial Management Association, vol. 21(3), pages 556-589, June.
    3. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2021. "The impact of hedging on risk-averse agents’ output decisions," Economic Modelling, Elsevier, vol. 104(C).
    4. Cooray, Arusha, 2011. "The role of the government in financial sector development," Economic Modelling, Elsevier, vol. 28(3), pages 928-938, May.
    5. Campbell, Randall C. & Nagel, Gregory L., 2016. "Private information and limitations of Heckman's estimator in banking and corporate finance research," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 186-195.
    6. Thomas A. Garrett & Russell S. Sobel, 2004. "State Lottery Revenue: The Importance of Game Characteristics," Public Finance Review, , vol. 32(3), pages 313-330, May.
    7. Venkatesh Shankar & Pablo Azar & Matthew Fuller, 2008. "—: A Multicategory Brand Equity Model and Its Application at Allstate," Marketing Science, INFORMS, vol. 27(4), pages 567-584, 07-08.
    8. Giuseppe Croce & Emanuela Ghignoni, 2011. "Overeducation and spatial flexibility in Italian local labour markets," Working Papers in Public Economics 145, Department of Economics and Law, Sapienza University of Roma.
    9. Meghamrita Chakraborty, 2023. "Linking Migration, Diversity and Regional Development in India," Journal of Development Policy and Practice, , vol. 8(1), pages 55-72, January.
    10. Jessica M. Mc Lay & Roy Lay-Yee & Barry J. Milne & Peter Davis, 2015. "Regression-Style Models for Parameter Estimation in Dynamic Microsimulation: An Empirical Performance Assessment," International Journal of Microsimulation, International Microsimulation Association, vol. 8(2), pages 83-127.
    11. Machado, Matilde P., 2001. "Dollars and performance: treating alcohol misuse in Maine," Journal of Health Economics, Elsevier, vol. 20(4), pages 639-666, July.
    12. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    13. James J. Heckman, 1991. "Randomization and Social Policy Evaluation Revisited," NBER Technical Working Papers 0107, National Bureau of Economic Research, Inc.
    14. Shi, Yun & Cui, Xiangyu & Zhou, Xunyu, 2020. "Beta and Coskewness Pricing: Perspective from Probability Weighting," SocArXiv 5rqhv, Center for Open Science.
    15. Gordon Dahl, 2010. "Early teen marriage and future poverty," Demography, Springer;Population Association of America (PAA), vol. 47(3), pages 689-718, August.
    16. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    17. Huy Quang Doan, 2019. "Trade, Institutional Quality and Income: Empirical Evidence for Sub-Saharan Africa," Economies, MDPI, vol. 7(2), pages 1-23, May.
    18. David Weiskopf, 2000. "The Impact of Omitting Promotion Variables on Simulation Experiments," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 7(2), pages 159-166.
    19. Etienne Redor & Magnus Blomkvist, 2021. "Do all inside and affiliated directors hold the same value for shareholders?," Economics Bulletin, AccessEcon, vol. 41(3), pages 882-895.
    20. repec:idn:journl:v:21:y:2019:i:3e:p:1-28 is not listed on IDEAS
    21. Sagnik Bagchi & Surajit Bhattacharyya & K. Narayanan, 2015. "Anti-dumping Initiations in Indian Manufacturing Industries," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 16(2), pages 278-294, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.