IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2000s-46.html
   My bibliography  Save this paper

Factor Analysis and Independent Component Analysis in Presence of High Idiosyncratic Risks

Author

Listed:
  • Thierry Vessereau

Abstract

This paper addresses the case when stock market returns are assumed being generated through a factorial structure. High levels of idiosyncratic risk are shown to exist for most stocks on the US market, when CAPM or APT are used for the estimation of diversifiable risks. The presence of these high idiosyncratic risks may not allow a correct estimation of the generating factors when using a classic factor analysis method. The Independent Component Analysis is introduced as an adequate method for factor estimation; using neural networks, this method allows taking into account the information contained in higher moments. Through simulations of markets with various assumptions on the kind of processes followed by the generating factors, this method is shown to strongly improve the factors estimation, especially when high idiosyncratic risks are present. In the latter case, a traditional factor analysis, such as the Principal Component Analysis, may fail to estimate the generating factors. Cet article traite le cas d'un marché d'actions dont les rendements sont susceptibles d'être expliqués par une structure factorielle. Sur le marché américain, il est montré que des risques idiosyncratiques élevés existent pour la plupart des actions quelque soit le modèle d'évaluation utilisé (CAPM ou APT). La présence de ces risques idiosyncratiques élevés peut empêcher une évaluation correcte des facteurs générant les rendements, lorsqu'une méthode d'analyse factorielle classique est utilisée. Il est ici proposé d'utiliser la méthode de l'Analyse en Composantes Indépendantes (INCA), reposant sur les réseaux neuronaux, pour parvenir à une évaluation correcte des facteurs; cette méthode permet de prendre en compte la majeure partie de l'information contenue dans les distributions des rendements des actions, en utilisant les moments d'ordre élevé de ces distributions. ¸ l'aide de simulations de marchés artificiels, pour lesquels différentes hypothèses des processus de générations des rendements sont retenus, il est montré que la méthode de l'INCA permet une amélioration significative de l'estimation de la structure factorielle, en particulier lorsque des composantes idiosyncratiques élevées sont présents dans les les rendements des actions. Dans ce dernier cas, une méthode classique d'analyse factorielle, comme l'Analyse en Composantes Principales, peut échouer totalement dans l'estimation des facteurs.

Suggested Citation

  • Thierry Vessereau, 2000. "Factor Analysis and Independent Component Analysis in Presence of High Idiosyncratic Risks," CIRANO Working Papers 2000s-46, CIRANO.
  • Handle: RePEc:cir:cirwor:2000s-46
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2000s-46.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    2. Grinblatt, Mark & Titman, Sheridan, 1983. "Factor pricing in a finite economy," Journal of Financial Economics, Elsevier, vol. 12(4), pages 497-507, December.
    3. Trzcinka, Charles A, 1986. "On the Number of Factors in the Arbitrage Pricing Model," Journal of Finance, American Finance Association, vol. 41(2), pages 347-368, June.
    4. Chen, Nai-fu & Ingersoll, Jonathan E, Jr, 1983. "Exact Pricing in Linear Factor Models with Finitely Many Assets: A Note," Journal of Finance, American Finance Association, vol. 38(3), pages 985-988, June.
    5. L. F. G. De Cazaux, 1965. "On The Budget," Journal of Accounting Research, Wiley Blackwell, vol. 3(2), pages 264-265.
    6. Gur Huberman, 2005. "A Simple Approach to Arbitrage Pricing Theory," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 9, pages 289-308, World Scientific Publishing Co. Pte. Ltd..
    7. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    8. Connor, Gregory, 1984. "A unified beta pricing theory," Journal of Economic Theory, Elsevier, vol. 34(1), pages 13-31, October.
    9. Dhrymes, Phoebus J & Friend, Irwin & Gultekin, N Bulent, 1984. "A Critical Reexamination of the Empirical Evidence on the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 39(2), pages 323-346, June.
    10. Chen, Nai-fu, 1983. "Some Empirical Tests of the Theory of Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 38(5), pages 1393-1414, December.
    11. Roll, Richard & Ross, Stephen A, 1980. "An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
    12. Ingersoll, Jonathan E, Jr, 1984. "Some Results in the Theory of Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 39(4), pages 1021-1039, September.
    13. Lehmann, Bruce N. & Modest, David M., 1988. "The empirical foundations of the arbitrage pricing theory," Journal of Financial Economics, Elsevier, vol. 21(2), pages 213-254, September.
    14. Mei, Jianping, 1993. "A Semiautoregression Approach to the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 48(2), pages 599-620, June.
    15. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    16. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilian Vermorken & Ariane Szafarz & Hugues Pirotte, 2008. "Sector classification through non-Gaussian similarity," Working Papers CEB 08-032.RS, ULB -- Universite Libre de Bruxelles.
    2. Fabio Bellini & Ernesto Salinelli, 2003. "Independent Component Analysis and Immunization: An Exploratory Study," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 721-738.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc Altay, 2003. "The Effect of Macroeconomic Factors on Asset Returns: A Comparative Analysis of the German and the Turkish Stock Markets in an APT Framework," Finance 0307006, University Library of Munich, Germany.
    2. Chadwick, Meltem, 2010. "Performance of Bayesian Latent Factor Models in Measuring Pricing Errors," MPRA Paper 79060, University Library of Munich, Germany.
    3. Michailidis, G., 2009. "Multivariate methods in examining macroeconomic variables effect on Greek stock market returns, 1997-2004," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 9(1).
    4. Attiya Y. Javed, 2000. "Alternative Capital Asset Pricing Models: A Review of Theory and Evidence," PIDE-Working Papers 2000:179, Pakistan Institute of Development Economics.
    5. Attiya Yasmeen Javid, 2000. "Alternative Capital Asset Pricing Models: A Review of Theory and Evidence," PIDE Research Report 2000:3, Pakistan Institute of Development Economics.
    6. Gur Huberman & Zhenyu Wang, 2005. "Arbitrage pricing theory," Staff Reports 216, Federal Reserve Bank of New York.
    7. Christophe Morel, 2001. "Stock selection using a multi-factor model - empirical evidence from the French stock market," The European Journal of Finance, Taylor & Francis Journals, vol. 7(4), pages 312-334.
    8. Bruce N. Lehmann & David M. Modest, 1985. "Mutual Fund Performance Evaluation: A Comparison of Benchmarks and Benchmark Comparisons," NBER Working Papers 1721, National Bureau of Economic Research, Inc.
    9. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    10. Lam, Keith S. K., 2002. "The relationship between size, book-to-market equity ratio, earnings-price ratio, and return for the Hong Kong stock market," Global Finance Journal, Elsevier, vol. 13(2), pages 163-179.
    11. Nawalkha, Sanjay K., 1997. "A multibeta representation theorem for linear asset pricing theories," Journal of Financial Economics, Elsevier, vol. 46(3), pages 357-381, December.
    12. Louis K. C. Chan & Jason Karceski & Josef Lakonishok, 1997. "The Risk and Return from Factors," NBER Working Papers 6098, National Bureau of Economic Research, Inc.
    13. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    14. Sentana, Enrique, 2004. "Factor representing portfolios in large asset markets," Journal of Econometrics, Elsevier, vol. 119(2), pages 257-289, April.
    15. Ghysels, E., 1995. "On Stable Factor Structurs in the Pricing of Risk," Cahiers de recherche 9525, Universite de Montreal, Departement de sciences economiques.
    16. Huang, Roger D. & Jo, Hoje, 1995. "Data frequency and the number of factors in stock returns," Journal of Banking & Finance, Elsevier, vol. 19(6), pages 987-1003, September.
    17. Michael Rothschild, 1985. "Asset Pricing Theories," NBER Technical Working Papers 0044, National Bureau of Economic Research, Inc.
    18. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    19. Jones, Christopher S., 2001. "Extracting factors from heteroskedastic asset returns," Journal of Financial Economics, Elsevier, vol. 62(2), pages 293-325, November.
    20. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2000s-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.