IDEAS home Printed from https://ideas.repec.org/p/cfm/wpaper/2431.html
   My bibliography  Save this paper

Geopolitical Risk and Inflation: The Role of Energy Markets

Author

Listed:
  • Marco Pinchetti

    (Bank of England
    Centre for Macroeconomics (CFM))

Abstract

Episodes characterized by heightened geopolitical tensions are often associated with adverse developments in energy markets, and particularly in oil markets. This paper investigates the consequences of different classes of geopolitical risk shocks for inflation and economic activity, focusing on the role of energy markets. By exploiting the comovement of the Caldara and Iacoviello (2022) GPR index and oil prices around selected episodes via high-frequency sign restrictions a la Jarocinski and Karadi (2020) and narrative sign restrictions a la Antolin-Diaz and Rubio-Ramirez (2018), the paper disentangles the impact of geopolitical shocks associated with disruptions on energy markets from geopolitical shocks associated with economic contractions unrelated to energy markets. These two classes of shocks are associated with distinct macro consequences. A positive surprise in the GPR index associated with geopolitical macro shocks is on average contractionary and deflationary. On the other hand, a positive surprise in the GPR index associated with geopolitical energy shocks is on average contractionary and inflationary. The identification strategy is validated at sector-level by exploiting the heterogeneity in the response of 57 sectors of the US economy to different classes of geopolitical shocks. Sectors characterized by higher energy intensity are subject to larger output losses and price increases in response to geopolitical energy shocks, while the same does not hold in response to geopolitical macro shocks.

Suggested Citation

  • Marco Pinchetti, 2024. "Geopolitical Risk and Inflation: The Role of Energy Markets," Discussion Papers 2431, Centre for Macroeconomics (CFM).
  • Handle: RePEc:cfm:wpaper:2431
    as

    Download full text from publisher

    File URL: https://www.lse.ac.uk/CFM/assets/pdf/CFM-Discussion-Papers-2024/CFMDP2024-31-Paper.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    2. Renée Fry & Adrian Pagan, 2011. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 938-960, December.
    3. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    4. Refet S Gürkaynak & Brian Sack & Eric Swanson, 2005. "Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements," International Journal of Central Banking, International Journal of Central Banking, vol. 1(1), May.
    5. Tarek A Hassan & Stephan Hollander & Laurence van Lent & Ahmed Tahoun, 2019. "Firm-Level Political Risk: Measurement and Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 2135-2202.
    6. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    7. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    8. Jonas E. Arias & Juan F. Rubio‐Ramírez & Daniel F. Waggoner, 2018. "Inference Based on Structural Vector Autoregressions Identified With Sign and Zero Restrictions: Theory and Applications," Econometrica, Econometric Society, vol. 86(2), pages 685-720, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    2. Gabor Pinter, 2018. "Macroeconomic Shocks and Risk Premia," Discussion Papers 1812, Centre for Macroeconomics (CFM).
    3. Lutz Kilian & Xiaoqing Zhou, 2020. "Does drawing down the US Strategic Petroleum Reserve help stabilize oil prices?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 673-691, September.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Herwartz, Helmut & Wang, Shu, 2023. "Point estimation in sign-restricted SVARs based on independence criteria with an application to rational bubbles," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    6. Kilian, Lutz, 2022. "Facts and fiction in oil market modeling," Energy Economics, Elsevier, vol. 110(C).
    7. Lutz Kilian & Xiaoqing Zhou, 2023. "The Econometrics of Oil Market VAR Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 65-95, Emerald Group Publishing Limited.
    8. Philippe Andrade & Filippo Ferroni & Leonardo Melosi, 2023. "Identification Using Higher-Order Moments Restrictions," Working Paper Series WP 2023-28, Federal Reserve Bank of Chicago.
    9. Szafranek, Karol & Szafrański, Grzegorz & Leszczyńska-Paczesna, Agnieszka, 2024. "Inflation returns. Revisiting the role of external and domestic shocks with Bayesian structural VAR," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 789-810.
    10. Carrillo-Maldonado, Paul & Díaz-Cassou, Javier, 2023. "An anatomy of external shocks in the Andean region," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    11. Sandra Eickmeier & Norbert Metiu & Esteban Prieto, 2016. "Time-varying volatility, financial intermediation and monetary policy," CAMA Working Papers 2016-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. David S. Jacks & Martin Stuermer, 2021. "Dry bulk shipping and the evolution of maritime transport costs, 1850–2020," Australian Economic History Review, Economic History Society of Australia and New Zealand, vol. 61(2), pages 204-227, July.
    13. Jochen Güntner & Magnus Reif & Maik Wolters, 2024. "Sudden stop: Supply and demand shocks in the German natural gas market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1282-1300, November.
    14. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    15. Jochen Güntner & Magnus Reif & Maik Wolters, 2024. "Sudden stop: Supply and demand shocks in the German natural gas market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1282-1300, November.
    16. Robin Braun & Ralf Brüggemann, 2020. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2020-01, Department of Economics, University of Konstanz.
    17. Xiwen Bai & Jesús Fernández-Villaverde & Yiliang Li & Francesco Zanetti, 2024. "The Causal Effects of Global Supply Chain Disruptions on Macroeconomic Outcomes: Evidence and Theory," Economics Series Working Papers 1033, University of Oxford, Department of Economics.
    18. Riggi, Marianna & Venditti, Fabrizio, 2015. "The time varying effect of oil price shocks on euro-area exports," Journal of Economic Dynamics and Control, Elsevier, vol. 59(C), pages 75-94.
    19. Inoue, Atsushi & Kilian, Lutz, 2022. "Joint Bayesian inference about impulse responses in VAR models," Journal of Econometrics, Elsevier, vol. 231(2), pages 457-476.
    20. Dominik Bertsche, 2019. "The effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approachThe effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approach," Working Paper Series of the Department of Economics, University of Konstanz 2019-06, Department of Economics, University of Konstanz.

    More about this item

    Keywords

    Geopolitical Risk; Business Cycles; Energy; High-Frequency Sign Restrictions; High-Frequency Identification; Narrative Sign Restrictions;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • Q35 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Hydrocarbon Resources
    • Q38 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Government Policy (includes OPEC Policy)
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfm:wpaper:2431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helen Power (email available below). General contact details of provider: https://edirc.repec.org/data/cmlseuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.