IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf489.html
   My bibliography  Save this paper

A new investment method with AutoEncoder: Applications to crypto currencies(Forthcoming in "Expert Systems with Applications")

Author

Listed:
  • Masafumi Nakano

    (GCI Asset Management)

  • Akihiko Takahashi

    (Graduate School of Economics and CARF, University of Tokyo)

Abstract

This paper proposes a novel approach to the portfolio management using an AutoEncoder. In particular, features learned by an AutoEncoder with ReLU are directly exploited to portfolio constructions. Since the AutoEncoder extracts characteristics of data through a non-linear activation function ReLU, its realization is generally difficult due to the non-linear transformation procedure. In the current paper, we solve this problem by taking full advantage of the similarity of ReLU and an option payoff. Especially, this paper shows that the features are successfully replicated by applying so-called dynamic delta hedging strategy. An out of sample simulation with crypto currency dataset shows the effectiveness of our proposed strategy.

Suggested Citation

  • Masafumi Nakano & Akihiko Takahashi, 2020. "A new investment method with AutoEncoder: Applications to crypto currencies(Forthcoming in "Expert Systems with Applications")," CARF F-Series CARF-F-489, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf489
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akihiko Takahashi & Soichiro Takahashi, 2022. "A state space modeling for proactive management in equity investment "Forthcoming in International Journal of Financial Engineering"," CARF F-Series CARF-F-543, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Daiya Mita & Akihiko Takahashi, 2022. "Multi-Agent Model Based Proactive Risk Management For Equity Investment," CIRJE F-Series CIRJE-F-1207, CIRJE, Faculty of Economics, University of Tokyo.
    3. Akihiko Takahashi & Soichiro Takahashi, 2022. "A State Space Modeling for Proactive Management in Equity Investment," CIRJE F-Series CIRJE-F-1197, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.