IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf446.html
   My bibliography  Save this paper

Term Structure Models During the Global Financial Crisis: A Parsimonious Text Mining Approach(Forthcoming in "Asia-Pacific Financial Markets". )

Author

Listed:
  • Kiyohiko G. Nishimura

    (National Graduate Institute for Policy Studies (GRIPS) and CARF, University of Tokyo)

  • Seisho Sato

    (Gradtuate School of Economics and CARF, University of Tokyo)

  • Akihiko Takahashi

    (Gradtuate School of Economics and CARF, University of Tokyo)

Abstract

This work develops and estimates a three-factor term structure model with explicit sentiment factors in a period including the global financial crisis, where market confidence was said to erode considerably. It utilizes a large text data of real time, relatively high-frequency market news and takes account of the difficulties in incorporating market sentiment into the models. To the best of our knowledge, this is the first attempt to use this category of data in term-structure models. Although market sentiment or market confidence is often regarded as an important driver of asset markets, it is not explicitly incorporated in traditional empirical factor models for daily yield curve data because they are unobservable. To overcome this problem, we use a text mining approach to generate observable variables which are driven by otherwise unobservable sentiment factors. Then, applying the Monte Carlo filter as a filtering method in a state space Bayesian filtering approach, we estimate the dynamic stochastic structure of these latent factors from observable variables driven by these latent variables. As a result, the three-factor model with text mining is able to distinguish (1) a spread-steepening factor which is driven by pessimists' view and explaining the spreads related to ultra-long term yields from (2) a spread-flattening factor which is driven by optimists' view and influencing the long and medium term spreads. Also, the three-factor model with text mining has better fitting to the observed yields than the model without text mining. Moreover, we collect market participants' views about specific spreads in the term structure and find that the movement of the identified sentiment factors are consistent with the market participants' views, and thus market sentiment.

Suggested Citation

  • Kiyohiko G. Nishimura & Seisho Sato & Akihiko Takahashi, 2018. "Term Structure Models During the Global Financial Crisis: A Parsimonious Text Mining Approach(Forthcoming in "Asia-Pacific Financial Markets". )," CARF F-Series CARF-F-446, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf446
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/admin/wp-content/uploads/2018/10/F446.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael D. Bauer, 2015. "Nominal Interest Rates and the News," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(2-3), pages 295-332, March.
    2. Takaya Fukui & Seisho Sato & Akihiko Takahashi, 2017. "Style analysis with particle filtering and generalized simulated annealing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.
    3. GlennD. Rudebusch & Tao Wu, 2008. "A Macro-Finance Model of the Term Structure, Monetary Policy and the Economy," Economic Journal, Royal Economic Society, vol. 118(530), pages 906-926, July.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    6. Kiyohiko G. Nishimura & Hiroyuki Ozaki, 2017. "Economics of Pessimism and Optimism," Springer Books, Springer, number 978-4-431-55903-0, December.
    7. Akihiko Takahashi & Seisho Sato, 2001. "A Monte Carlo Filtering Approach for Estimating the Term Structure of Interest Rates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 50-62, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiyohiko G. Nishimura & Seisho Sato & Akihiko Takahashi, 2018. "Term Structure Models During the Global Financial Crisis: A Parsimonious Text Mining Approach," Working Papers on Central Bank Communication 003, University of Tokyo, Graduate School of Economics.
    2. Kiyohiko G. Nishimura & Seisho Sato & Akihiko Takahashi, 2019. "Term Structure Models During the Global Financial Crisis: A Parsimonious Text Mining Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 297-337, September.
    3. Kiyohiko G. Nishimura & Seisho Sato & Akihiko Takahashi, 2018. "Term Structure Models During the Global Financial Crisis: A Parsimonious Text Mining Approach," CIRJE F-Series CIRJE-F-1101, CIRJE, Faculty of Economics, University of Tokyo.
    4. Souta Nakatani & Kiyohiko G. Nishimura & Taiga Saito & Akihiko Takahashi, 2019. "Online Appendix for Interest Rate Model with Investor Attitude and Text Mining," CIRJE F-Series CIRJE-F-1136, CIRJE, Faculty of Economics, University of Tokyo.
    5. Souta Nakatani & Kiyohiko G. Nishimura & Taiga Saito & Akihiko Takahashi, 2019. "Online Appendix for Interest Rate Model with Investor Attitude and Text Mining," CARF F-Series CARF-F-470, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    7. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    8. Souta Nakatani & Kiyohiko G. Nishimura & Taiga Saito & Akihiko Takahashi, 2020. "Interest Rate Model with Investor Attitude and Text Mining (Published in IEEE Access)," CARF F-Series CARF-F-479, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Zeno Rotondi, 2006. "The Macroeconomy and the Yield Curve: A Review of the Literature with Some New Evidence," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 65(2), pages 193-224, November.
    10. Caldeira, João F. & Laurini, Márcio P. & Portugal, Marcelo S., 2010. "Bayesian Inference Applied to Dynamic Nelson-Siegel Model with Stochastic Volatility," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(1), October.
    11. Giuliano De Rossi, 2004. "Maximum likelihood estimation of the Cox-Ingersoll-Ross model using particle filters," Computing in Economics and Finance 2004 302, Society for Computational Economics.
    12. Giuliano De Rossi, 2010. "Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters," Computational Economics, Springer;Society for Computational Economics, vol. 36(1), pages 1-16, June.
    13. Souta Nakatani & Kiyohiko G. Nishimura & Taiga Saito & Akihiko Takahashi, 2020. "Interest Rate Model with Investor Attitude and Text Mining," CIRJE F-Series CIRJE-F-1152, CIRJE, Faculty of Economics, University of Tokyo.
    14. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    15. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi & Takami Tokioka, 2018. "On the Effect of Bank of Japan’s Outright Purchase on the JGB Yield Curve," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(1), pages 47-70, March.
    16. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    17. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    18. Chen, Ren-Raw & Liu, Bo & Cheng, Xiaolin, 2010. "Pricing the term structure of inflation risk premia: Theory and evidence from TIPS," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 702-721, September.
    19. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    20. Gupta, Anurag & Subrahmanyam, Marti G., 2000. "An empirical examination of the convexity bias in the pricing of interest rate swaps," Journal of Financial Economics, Elsevier, vol. 55(2), pages 239-279, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.