IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf105.html
   My bibliography  Save this paper

Efficient Static Replication of European Options for Exponential Levy Models (Revised in January 2008, Published in "Journal of Futures Markets", Vol.29-1, 1-15, 2009. )

Author

Listed:
  • Akihiko Takahashi

    (Faculty of Economics, University of Tokyo)

  • Akira Yamazaki

    (Mizuho-DL Financial Technology Co., Ltd.)

Abstract

This paper proposes a new scheme for the static replication of European options and their portfolios. First, we derive a general approximation formula for efficient static replication as an extension of Carr and Chou [1997, 2002] and Carr and Wu [2002]. Second, we present a concrete procedure for implementing our scheme by applying it to plain vanilla options under exponential L?evy models. Finally, numerical examples in a model developed by Carr, Geman, Madan and Yor[2002] are used to demonstrate that our replication scheme is more efficient and more effective in practice than a standard static replication method.

Suggested Citation

  • Akihiko Takahashi & Akira Yamazaki, 2007. "Efficient Static Replication of European Options for Exponential Levy Models (Revised in January 2008, Published in "Journal of Futures Markets", Vol.29-1, 1-15, 2009. )," CARF F-Series CARF-F-105, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf105
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/107.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    3. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    4. repec:bla:jfinan:v:53:y:1998:i:3:p:1165-1190 is not listed on IDEAS
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    7. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2023. "Data-driven Approach for Static Hedging of Exchange Traded Options," Papers 2302.00728, arXiv.org, revised Jan 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    2. Shuang Li & Yanli Zhou & Yonghong Wu & Xiangyu Ge, 2017. "Equilibrium approach of asset and option pricing under Lévy process and stochastic volatility," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 276-295, May.
    3. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    4. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    6. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    7. Akihiko Takahashi & Akira Yamazaki, 2008. "Efficient Static Replication of European Options under Exponential Levy Models," CIRJE F-Series CIRJE-F-539, CIRJE, Faculty of Economics, University of Tokyo.
    8. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    9. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    10. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    11. Fu, Jun & Yang, Hailiang, 2012. "Equilibruim approach of asset pricing under Lévy process," European Journal of Operational Research, Elsevier, vol. 223(3), pages 701-708.
    12. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2011. "High-order short-time expansions for ATM option prices under the CGMY model," Papers 1112.3111, arXiv.org, revised Aug 2012.
    13. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    16. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    17. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    18. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    19. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    20. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.