R&D, Attrition and Multiple Imputation in BRDIS
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Michael W. Robbins & Sujit K. Ghosh & Joshua D. Habiger, 2013. "Imputation in High-Dimensional Economic Data as Applied to the Agricultural Resource Management Survey," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 81-95, March.
- Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
- David A. Penn, 2007.
"Estimating Missing Values from the General Social Survey: An Application of Multiple Imputation,"
Social Science Quarterly, Southwestern Social Science Association, vol. 88(2), pages 573-584, June.
- David A. Penn, 2007. "Estimating Missing Values from the General Social Survey: An Application of Multiple Imputation," Working Papers 200709, Middle Tennessee State University, Department of Economics and Finance.
- T. Kirk White & Jerome P. Reiter & Amil Petrin, 2018.
"Imputation in U.S. Manufacturing Data and Its Implications for Productivity Dispersion,"
The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 502-509, July.
- T. Kirk White & Jerome P. Reiter & Amil Petrin, 2016. "Imputation in U.S. Manufacturing Data and Its Implications for Productivity Dispersion," NBER Working Papers 22569, National Bureau of Economic Research, Inc.
- Matthias Templ & Andreas Alfons & Peter Filzmoser, 2012. "Exploring incomplete data using visualization techniques," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 29-47, April.
- Honaker, James & King, Gary & Blackwell, Matthew, 2011. "Amelia II: A Program for Missing Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i07).
- Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
- T. Kirk White & Jerome P. Reiter & Amil Petrin, 2011. "Plant-Level Productivity and Imputation of Missing Data in the Census of Manufactures," Working Papers 11-02, Center for Economic Studies, U.S. Census Bureau.
- Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
- Schenker, Nathaniel & Raghunathan, Trivellore E. & Chiu, Pei-Lu & Makuc, Diane M. & Zhang, Guangyu & Cohen, Alan J., 2006. "Multiple Imputation of Missing Income Data in the National Health Interview Survey," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 924-933, September.
- Lucia Foster & Cheryl Grim & Nikolas Zolas, 2020.
"A portrait of U.S. firms that invest in R&D,"
Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 29(1), pages 89-111, January.
- Lucia Foster & Cheryl Grim & Nikolas Zolas, 2016. "A Portrait of Firms that Invest in R&D," Working Papers 16-41, Center for Economic Studies, U.S. Census Bureau.
- Jörg Drechsler, 2011. "Multiple imputation in practice—a case study using a complex German establishment survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 1-26, March.
- Lucia Foster & Cheryl Grim, 2010. "Characteristics of the Top R&D Performing Firms in the U.S.: Evidence from the Survey of Industrial R&D," Working Papers 10-33, Center for Economic Studies, U.S. Census Bureau.
- Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
- Lawrence R. Landerman & Kenneth C. Land & Carl F. Pieper, 1997. "An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values," Sociological Methods & Research, , vol. 26(1), pages 3-33, August.
- Yongwei Chen & Dahai Fu, 2015. "Measuring income inequality using survey data: the case of China," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 13(2), pages 299-307, June.
- Ron S Jarmin & Javier Miranda, 2002. "The Longitudinal Business Database," Working Papers 02-17, Center for Economic Studies, U.S. Census Bureau.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martin, Eisele & Zhu, Junyi, 2013.
"Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions,"
MPRA Paper
57666, University Library of Munich, Germany.
- Eisele, Martin & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," EconStor Preprints 100007, ZBW - Leibniz Information Centre for Economics.
- Christian Aßmann & Ariane Würbach & Solange Goßmann & Ferdinand Geissler & Anika Bela, 2017. "Nonparametric Multiple Imputation for Questionnaires with Individual Skip Patterns and Constraints: The Case of Income Imputation in the National Educational Panel Study," Sociological Methods & Research, , vol. 46(4), pages 864-897, November.
- Nathan Goldschlag & Elisabeth Perlman, 2017. "Business Dynamic Statistics of Innovative Firms," Working Papers 17-72, Center for Economic Studies, U.S. Census Bureau.
- Morehart, Mitch & Milkove, Dan & Xu, Yang, 2014. "Multivariate Farm Debt Imputation in the Agricultural Resource Management Survey (ARMS)," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169401, Agricultural and Applied Economics Association.
- Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
- Kristian Kleinke & Jost Reinecke, 2013. "Multiple imputation of incomplete zero-inflated count data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 311-336, August.
- Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
- Verbeek, M.J.C.M. & Nijman, T.E., 1992.
"Incomplete panels and selection bias : A survey,"
Discussion Paper
1992-7, Tilburg University, Center for Economic Research.
- Verbeek, M. & Nijman, T., 1992. "Incomplete Panels and Selection Bias: A Survey," Papers 9207, Tilburg - Center for Economic Research.
- Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Dang, Hai-Anh H & Carletto, Calogero, 2022.
"Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation,"
IZA Discussion Papers
14997, Institute of Labor Economics (IZA).
- Dang, Hai-Anh H. & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," GLO Discussion Paper Series 1020, Global Labor Organization (GLO).
- Daniel Schunk, 2007.
"A Markov Chain Monte Carlo Multiple Imputation Procedure for Dealing with Item Nonresponse in the German SAVE Survey,"
MEA discussion paper series
07121, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
- Schunk, Daniel, 2007. "A Markov Chain Monte Carlo multiple imputation procedure for dealing with item nonresponse in the German SAVE survey," Papers 07-06, Sonderforschungsbreich 504.
- Schunk, Daniel, 2007. "A Markov Chain Monte Carlo Multiple Imputation Procedure for Dealing with Item Nonresponse in the German SAVE Survey," Sonderforschungsbereich 504 Publications 07-06, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
- Seiler, Christian & Heumann, Christian, 2013.
"Microdata imputations and macrodata implications: Evidence from the Ifo Business Survey,"
Economic Modelling, Elsevier, vol. 35(C), pages 722-733.
- Seiler, Christian & Heumann, Christian, 2012. "Microdata imputations and macrodata implications: evidence from the Ifo Business Survey," MPRA Paper 37045, University Library of Munich, Germany.
- Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
- Zachary H. Seeskin, 2016. "Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes," CARRA Working Papers 2016-06, Center for Economic Studies, U.S. Census Bureau.
- F. Di Lascio & Simone Giannerini & Alessandra Reale, 2015. "Exploring copulas for the imputation of complex dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 159-175, March.
- Ankita Patnaik & Jeffrey Hemmeter & Arif Mamun, "undated". "Promoting Readiness of Minors with Autism Spectrum Disorder: Evidence from a Randomized Controlled Trial," Mathematica Policy Research Reports a74c93d9bdce40709ad81cdbc, Mathematica Policy Research.
- Westermeier, Christian & Grabka, Markus M., 2016.
"Longitudinal Wealth Data and Multiple Imputation: An Evaluation Study,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(3), pages 237-252.
- Christian Westermeier & Markus M. Grabka, 2015. "Longitudinal Wealth Data and Multiple Imputation: An Evaluation Study," SOEPpapers on Multidisciplinary Panel Data Research 790, DIW Berlin, The German Socio-Economic Panel (SOEP).
- Youngjoo Cho & Debashis Ghosh, 2021. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 90-128, April.
- Ahfock, Daniel & Pyne, Saumyadipta & McLachlan, Geoffrey J., 2022. "Statistical file-matching of non-Gaussian data: A game theoretic approach," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
More about this item
Keywords
Multiple Imputation; R&D; attrition; unit nonresponse; item nonresponse; MICE; Stata MI; visualization; BRDIS; LBD;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-INO-2017-03-05 (Innovation)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:17-13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dawn Anderson (email available below). General contact details of provider: https://edirc.repec.org/data/cesgvus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.