IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt4fx9g4gn.html
   My bibliography  Save this paper

Real-World CO2 Impacts of Traffic Congestion

Author

Listed:
  • Barth, Matthew
  • Boriboonsomsin, Kanok

Abstract

Transportation plays a significant role in carbon dioxide (CO2) emissions, accounting for approximately a third of the United States’ inventory. In order to reduce CO2 emissions in the future, transportation policy makers are looking to make vehicles more efficient and increasing the use of carbon-neutral alternative fuels. In addition, CO2 emissions can be lowered by improving traffic operations, specifically through the reduction of traffic congestion. This paper examines traffic congestion and its impact on CO2 emissions using detailed energy and emission models and linking them to real-world driving patterns and traffic conditions. Using a typical traffic condition in Southern California as example, it has been found that CO2 emissions can be reduced by up to almost 20% through three different strategies: 1) congestion mitigation strategies that reduce severe congestion, allowing traffic to flow at better speeds; 2) speed management techniques that reduce excessively high free-flow speeds to more moderate conditions; and 3) shock wave suppression techniques that eliminate the acceleration/deceleration events associated with stop-and-go traffic that exists during congested conditions.

Suggested Citation

  • Barth, Matthew & Boriboonsomsin, Kanok, 2008. "Real-World CO2 Impacts of Traffic Congestion," University of California Transportation Center, Working Papers qt4fx9g4gn, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt4fx9g4gn
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/4fx9g4gn.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Said Dabia & Emrah Demir & Tom Van Woensel, 2017. "An Exact Approach for a Variant of the Pollution-Routing Problem," Transportation Science, INFORMS, vol. 51(2), pages 607-628, May.
    2. Jinghua Li & Hui Guo & Qinghua Zhou & Boxin Yang, 2019. "Vehicle Routing and Scheduling Optimization of Ship Steel Distribution Center under Green Shipbuilding Mode," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    3. Kverndokk, Snorre & Figenbaum, Erik & Hovi, Jon, 2020. "Would my driving pattern change if my neighbor were to buy an emission-free car?," Resource and Energy Economics, Elsevier, vol. 60(C).
    4. Altvater, Susanne & de Block, Debora & Bouwma, Irene & Dworak, Thomas & Frelih-Larsen, Ana & Görlach, Benjamin & Hermeling, Claudia & Klostermann, Judith & König, Martin & Leitner, Markus & Marinova, , 2012. "Adaptation measures in the EU: Policies, costs, and economic assessment. "Climate Proofing" of key EU policies," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 110558.
    5. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    6. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    7. Greenblatt, Jeffery B., 2015. "Modeling California policy impacts on greenhouse gas emissions," Energy Policy, Elsevier, vol. 78(C), pages 158-172.
    8. Mohammadi, M. & Torabi, S.A. & Tavakkoli-Moghaddam, R., 2014. "Sustainable hub location under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 89-115.
    9. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    10. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    11. Hamid R. Sayarshad & Vahid Mahmoodian & Nebojša Bojović, 2021. "Dynamic Inventory Routing and Pricing Problem with a Mixed Fleet of Electric and Conventional Urban Freight Vehicles," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    12. Demir, Emrah & Burgholzer, Wolfgang & Hrušovský, Martin & Arıkan, Emel & Jammernegg, Werner & Woensel, Tom Van, 2016. "A green intermodal service network design problem with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 789-807.
    13. Niknamfar, Amir Hossein & Niaki, Seyed Taghi Akhavan, 2016. "Fair profit contract for a carrier collaboration framework in a green hub network under soft time-windows: Dual lexicographic max–min approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 129-151.
    14. Hyangsook Lee & Hoang Thai Pham & Chihoon Kim & Kangdae Lee, 2019. "A Study on Emissions from Drayage Trucks in the Port City-Focusing on the Port of Incheon," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    15. Paul Minett & John Pearce, 2011. "Estimating the Energy Consumption Impact of Casual Carpooling," Energies, MDPI, vol. 4(1), pages 1-14, January.
    16. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    17. Onur Can Saka & Sinan Gürel & Tom Van Woensel, 2017. "Using cost change estimates in a local search heuristic for the pollution routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 557-587, March.
    18. Valentas Gruzauskas & Aurelija Burinskiene & Andrius Krisciunas, 2023. "Application of Information-Sharing for Resilient and Sustainable Food Delivery in Last-Mile Logistics," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    19. Franceschetti, Anna & Honhon, Dorothée & Van Woensel, Tom & Bektaş, Tolga & Laporte, Gilbert, 2013. "The time-dependent pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 265-293.
    20. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    21. Zhu, Weihua, 2009. "Design and Development of Novel Routing Methodologies for Dynamic Roadway Navigation Systems," University of California Transportation Center, Working Papers qt8d72371n, University of California Transportation Center.
    22. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    23. Caris, An & Limbourg, Sabine & Macharis, Cathy & van Lier, Tom & Cools, Mario, 2014. "Integration of inland waterway transport in the intermodal supply chain: a taxonomy of research challenges," Journal of Transport Geography, Elsevier, vol. 41(C), pages 126-136.
    24. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The impact of depot location, fleet composition and routing on emissions in city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 81-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt4fx9g4gn. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.