IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt0gw7q9hk.html
   My bibliography  Save this paper

Measurement Errors and Outliers in Seasonal Unit Root Testing

Author

Listed:
  • Haldrup, Niels Prof.
  • Montanes, Antonio
  • Sansó, Andreu

Abstract

Frequently, seasonal and non-seasonal data (especially macro time series) are observed with noise. For instance, the time series can have irregular abrupt changes and interruptions following as a result of additive or temporary change outliers caused by external circumstances which are irrelevant for the series of interest. Equally, the time series can have measurement errors. In this paper we analyse the above types of data irregularities on the behaviour of seasonal unit roots. It occurs that in most cases outliers and measurement errors can seriously affect inference towards the rejection of seasonal unit roots. It is shown how the distortion of the tests will depend upon the frequency, magnitude, and persistence of the outliers as well as on the signal to noise ratio associated with measurement errors. Some solutions to the implied inference problems are suggested.

Suggested Citation

  • Haldrup, Niels Prof. & Montanes, Antonio & Sansó, Andreu, 2000. "Measurement Errors and Outliers in Seasonal Unit Root Testing," University of California at San Diego, Economics Working Paper Series qt0gw7q9hk, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt0gw7q9hk
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0gw7q9hk.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierre Perron & Gabriel Rodríguez, 2003. "Searching For Additive Outliers In Nonstationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 193-220, March.
    2. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(3), pages 435-463.
    3. Timothy J. Vogelsang, 1999. "Two Simple Procedures for Testing for a Unit Root When There are Additive Outliers," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(2), pages 237-252, March.
    4. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(2), pages 527-560, April.
    5. Shin, Dong Wan & Sarkar, Sahadeb & Lee, Jong Hyup, 1996. "Unit root tests for time series with outliers," Statistics & Probability Letters, Elsevier, vol. 30(3), pages 189-197, October.
    6. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    7. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    8. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-379, July.
    9. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-478, October.
    10. Robert M. Kunst, 1997. "Testing For Cyclical Non‐Stationarity In Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(2), pages 123-135, March.
    11. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    12. Philip Hans Franses & Timothy J. Vogelsang, 1998. "On Seasonal Cycles, Unit Roots, And Mean Shifts," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 231-240, May.
    13. Breitung, Jörg & Franses, Philip Hans, 1998. "On Phillips–Perron-Type Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 14(2), pages 200-221, April.
    14. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    16. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(02), pages 527-560, April.
    17. Perron, Pierre & Vogelsang, Timothy J, 1992. "Testing for a Unit Root in a Time Series with a Changing Mean: Corrections and Extensions," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 467-470, October.
    18. Engle, R. F. & Granger, C. W. J. & Hylleberg, S. & Lee, H. S., 1993. "The Japanese consumption function," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 275-298.
    19. Cati, Regina Celia & Garcia, Marcio G P & Perron, Pierre, 1999. "Unit Roots in the Presence of Abrupt Governmental Interventions with an Application to Brazilian Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 27-56, Jan.-Feb..
    20. A. M. Robert Taylor, 1998. "Testing for Unit Roots in Monthly Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(3), pages 349-368, May.
    21. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    22. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    23. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
    24. Philip Hans Franses & Bart Hobijn, 1997. "Critical values for unit root tests in seasonal time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 25-48.
    25. Osborn, Denise R., 1993. "Seasonal cointegration," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 299-303.
    26. Perron, Pierre, 1990. "Testing for a Unit Root in a Time Series with a Changing Mean," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 153-162, April.
    27. Richard J. Smith & A. M. Robert Taylor, 1999. "Likelihood Ratio Tests for Seasonal Unit Roots," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(4), pages 453-476, July.
    28. Denise Osborn & Paulo Rodrigues, 2002. "Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 221-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Chang Sik & Lee, Sungro, 2011. "Spurious regressions driven by excessive volatility," Economics Letters, Elsevier, vol. 113(3), pages 292-297.
    2. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    3. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
    4. repec:hum:wpaper:sfb649dp2006-050 is not listed on IDEAS
    5. Čίžek, Pavel & Härdle, Wolfgang Karl, 2006. "Robust econometrics," SFB 649 Discussion Papers 2006-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Haldrup Niels & Montañes Antonio & Sansó Andreu, 2011. "Detection of Additive Outliers in Seasonal Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(2), pages 1-20, April.
    7. Gabriel Pons, 2006. "Testing Monthly Seasonal Unit Roots With Monthly and Quarterly Information," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 191-209, March.
    8. Niels Haldrup & Antonio Montañés & Andreu Sansó, 2004. "Testing for Additive Outliers in Seasonally Integrated Time Series," Economics Working Papers 2004-14, Department of Economics and Business Economics, Aarhus University.
    9. Haldrup, Niels & Sansó, Andreu, 2008. "A note on the Vogelsang test for additive outliers," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 296-300, February.
    10. Onsurang Norrbin & Aaron D. Smallwood, 2011. "Mean Reversion in the Real Interest Rate and the Effects of Calculating Expected Inflation," Southern Economic Journal, John Wiley & Sons, vol. 78(1), pages 107-130, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, October.
    2. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(2), pages 447-476, April.
    3. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    4. Luis C. Nunes & Paulo M. M. Rodrigues, 2011. "On LM‐type tests for seasonal unit roots in the presence of a break in trend," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(2), pages 108-134, March.
    5. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1121-1143, October.
    6. Alanya-Beltran, Willy, 2022. "Unit roots in lower-bounded series with outliers," Economic Modelling, Elsevier, vol. 115(C).
    7. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    8. Tomás Barrio Castro & Andrii Bodnar & Andreu Sansó, 2017. "Numerical distribution functions for seasonal unit root tests with OLS and GLS detrending," Computational Statistics, Springer, vol. 32(4), pages 1533-1568, December.
    9. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    10. Aparicio, Felipe M. & García, Ana, 2003. "Range unit root tests," DES - Working Papers. Statistics and Econometrics. WS ws031126, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Gawon Yoon, 2003. "The time series behaviour of Brazilian inflation rate: new evidence from unit root tests with good size and power," Applied Economics Letters, Taylor & Francis Journals, vol. 10(10), pages 627-631.
    12. Zou, Nan & Politis, Dimitris N., 2021. "Bootstrap seasonal unit root test under periodic variation," Econometrics and Statistics, Elsevier, vol. 19(C), pages 1-21.
    13. Sandra G. Feltham & David E.A. Giles, 1999. "Testing for Unit Roots in Semi-Annual Data," Econometrics Working Papers 9912, Department of Economics, University of Victoria.
    14. Arranz, Miguel A. & Mármol, Francesc, 2002. "Effects of Applying Linear and Nonlinear Filters on Tests for Unit Roots with Additive Outliers," UC3M Working papers. Economics we20091101, Universidad Carlos III de Madrid. Departamento de Economía.
    15. Darne, Olivier & Diebolt, Claude, 2004. "Unit roots and infrequent large shocks: new international evidence on output," Journal of Monetary Economics, Elsevier, vol. 51(7), pages 1449-1465, October.
    16. Olivier Darné & Amélie Charles, 2011. "Large shocks in U.S. macroeconomic time series: 1860-1988," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 5(1), pages 79-100, January.
    17. Cati, Regina Celia & Garcia, Marcio G P & Perron, Pierre, 1999. "Unit Roots in the Presence of Abrupt Governmental Interventions with an Application to Brazilian Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 27-56, Jan.-Feb..
    18. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
    19. Charles, Amélie & Darné, Olivier, 2012. "Trends and random walks in macroeconomic time series: A reappraisal," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 167-180.
    20. Rotger, Gabriel Pons, "undated". "Testing for Seasonal Unit Roots with Temporally Aggregated Time Series," Economics Working Papers 2003-16, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    seasonal unit roots; HEGY tests; additive outliers; measurement errors; Brownian motion;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt0gw7q9hk. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.