Urban Air Mobility: Viability of Hub-Door and Door-Door Movement by Air
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ballou, Ronald H. & Rahardja, Handoko & Sakai, Noriaki, 2002. "Selected country circuity factors for road travel distance estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 843-848, November.
- Akshat Kasliwal & Noah J. Furbush & James H. Gawron & James R. McBride & Timothy J. Wallington & Robert D. De Kleine & Hyung Chul Kim & Gregory A. Keoleian, 2019. "Role of flying cars in sustainable mobility," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Jie & Levinson, David M., 2015.
"Circuity in urban transit networks,"
Journal of Transport Geography, Elsevier, vol. 48(C), pages 145-153.
- Jie Huang & David Levinson, 2015. "Circuity in Urban Transit Networks," Working Papers 201501, University of Minnesota: Nexus Research Group.
- Husemann, Michael & Kirste, Ansgar & Stumpf, Eike, 2024. "Analysis of cost-efficient urban air mobility systems: Optimization of operational and configurational fleet decisions," European Journal of Operational Research, Elsevier, vol. 317(3), pages 678-695.
- Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
- Cohen, Adam & Shaheen, Susan, 2021. "Urban Air Mobility: Opportunities and Obstacles," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0r23p1gm, Institute of Transportation Studies, UC Berkeley.
- Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
- Kitthamkesorn, Songyot & Chen, Anthony, 2024. "Maximum capture problem for urban air mobility network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
- Yat Yen & Pengjun Zhao & Muhammad T Sohail, 2021. "The morphology and circuity of walkable, bikeable, and drivable street networks in Phnom Penh, Cambodia," Environment and Planning B, , vol. 48(1), pages 169-185, January.
- Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Zied Babai, M., 2023. "Network inventory deployment for responsive fulfillment," International Journal of Production Economics, Elsevier, vol. 255(C).
- Ali, Busyairah Syd & Saji, Sam & Su, Moon Ting, 2022. "An assessment of frameworks for heterogeneous aircraft operations in low-altitude airspace," International Journal of Critical Infrastructure Protection, Elsevier, vol. 37(C).
- Boeing, Geoff, 2017. "The Relative Circuity of Walkable and Drivable Urban Street Networks," SocArXiv 4rzqa, Center for Open Science.
- David J Giacomin & David M Levinson, 2015. "Road network circuity in metropolitan areas," Environment and Planning B, , vol. 42(6), pages 1040-1053, November.
- Raoul Rothfeld & Mengying Fu & Miloš Balać & Constantinos Antoniou, 2021. "Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
- Levinson, David & El-Geneidy, Ahmed, 2009.
"The minimum circuity frontier and the journey to work,"
Regional Science and Urban Economics, Elsevier, vol. 39(6), pages 732-738, November.
- David Levinson & Ahmed El-Geneidy, 2007. "The Minimum Circuity Frontier and the Journey to Work," Working Papers 200905, University of Minnesota: Nexus Research Group.
- Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013.
"Network Structure and Travel Time Perception,"
PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
- Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2012. "Network Structure and Travel Time Perception," Working Papers 000102, University of Minnesota: Nexus Research Group.
- Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Xiaoshu Cao & Feiwen Liang & Huiling Chen & Yongwei Liu, 2017. "Circuity Characteristics of Urban Travel Based on GPS Data: A Case Study of Guangzhou," Sustainability, MDPI, vol. 9(11), pages 1-21, November.
- Farazi, Nahid Parvez & Zou, Bo, 2024. "Planning electric vertical takeoff and landing aircraft (eVTOL)-based package delivery with community noise impact considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
- Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).
- Mulrow, John & Derrible, Sybil & Samaras, Constantine, 2019. "Sociotechnical convex hulls and the evolution of transportation activity: A method and application to US travel survey data," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
- Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
More about this item
Keywords
Engineering; Urban air mobility; drones; VTOL;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2020-03-30 (Energy Economics)
- NEP-ENV-2020-03-30 (Environmental Economics)
- NEP-TRE-2020-03-30 (Transport Economics)
- NEP-URE-2020-03-30 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6wq6x800. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.