Author
Abstract
Natural gas vehicles have been favored by U.S. air quality agencies for the cleaner burning properties of natural gas. However, the climate consequences of a switch to natural gas vehicles for long distance, heavy-duty applications has been less clear. The radioactive forcings of short-lived methane leakage must be weighed against any long term benefits of emitting less CO2. The scientific literature reports a variety of results and conclusions, thus policy makers often find it hard to make science-based, sound decision-making. But there is inherent natural variability in the system and virtually any result can be justified based on a given choice of input values. Some scholars deal with this variability with probabilistic distributions of inputs to produce probabilistic distributions of results. But this treatment of uncertainty might not resound with decision makers, who might prefer the simplicity of one single estimate. In this study, we attempt to tackle and communicate uncertainty in a simplified way in which a transparent base case scenario is modified one input at a time to determine the distinct parameters that are critical to assessing the climate impact of natural gas as a transportation fuel. Instead of focusing on a specific number, this analysis shows what makes a natural gas fuel a better option versus a bad option, so policy makers and agencies can focus on promoting these best practices among the interested parties. We utilize Argonne’s GREET1 2014 model to test sensitivities for the life cycle carbon intensity of natural gas versus diesel fuel under a range of scenarios for upstream and in vehicle methane leakage, fueling and storage technologies, and operational performance of various kinds of class 8 engines. We evaluate the relative importance of engine technology, natural gas fuel storage choice, upstream methane leakage (i.e., well-to-tank), and vehicle methane slip (i.e., tank-to-wheel). We find that: 1) Upstream methane leakage contributes between 7 and 11% and vehicle methane leakage (i.e., methane slip) contributes between 5 and 9% to the total carbon intensity of natural gas in long haul trucks; 2) Variability factors include whether natural gas fuel is stored as compressed (CNG) or liquefied (LNG) and whether a natural gas vehicle uses spark ignition or compression ignition. Natural gas engines typically being spark ignition, which are around 10% less efficient than compression ignition diesel engines; 3) If no efficiency penalty is assumed (as in the case of the currently out of market HPDI model), NGVs offer a climate advantage compared to diesel only if well-to-tank methane leakage remains under 5%; and 4) CNG storage is more sensitive to leakage than LNG storage. This analysis allows us to identify the most important strategies to reduce the carbon intensity of NGVs.
Suggested Citation
Dominguez-Faus, Rosa, 2015.
"The Carbon Intensity of NGV C8 Trucks,"
Institute of Transportation Studies, Working Paper Series
qt9n2963pg, Institute of Transportation Studies, UC Davis.
Handle:
RePEc:cdl:itsdav:qt9n2963pg
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Scheitrum, Daniel & Myers Jaffe, Amy & Dominguez-Faus, Rosa & Parker, Nathan, 2017.
"California low carbon fuel policies and natural gas fueling infrastructure: Synergies and challenges to expanding the use of RNG in transportation,"
Energy Policy, Elsevier, vol. 110(C), pages 355-364.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt9n2963pg. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.