IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt99q6w075.html
   My bibliography  Save this paper

Development of an Innovation Corridor Testbed for Shared Electric Connected and Automated Transportation

Author

Listed:
  • Oswald, David
  • Hao, Peng
  • Williams, Nigel
  • Barth, Matthew

Abstract

As part of the City of Riverside’s Smart-City initiative, UC Riverside researchers have developed an Innovation Corridor testbed for enabling shared electric connected and automated transportation research. This Innovation Corridor testbed is located in Riverside California, and consists of a six-mile section of University Avenue between the UC Riverside campus and downtown Riverside. The testbed supports various transportation modes including passenger vehicles, trucks, transit (e.g., RTA buses), bicycles, and various forms of micro-mobility. This corridor is continuously being instrumented with various infrastructure equipment to support research in shared electric connected and automated transportation. Specifically for this project, the corridor has been equipped with roadside communications equipment and advanced traffic signal controllers at several key intersections, to help improve safety, mobility and environmental sustainability. With this initial instrumentation, we have then conducted connected vehicle experimentation that utilize the signal phase and timing (SPaT) data from these intersections to smooth traffic flow and reduce emissions. For this Innovation Corridor, a high-fidelity simulation environment was also developed to evaluate potential connected vehicle strategies. A variety of Eco-Approach and Departure (EAD) connected vehicle experiments have been conducted and evaluated, both in simulation and in the real-world. As part of the simulation ecosystem, we have compared the energy and emissions modeling results to see which best matches the real-world measurements. View the NCST Project Webpage

Suggested Citation

  • Oswald, David & Hao, Peng & Williams, Nigel & Barth, Matthew, 2021. "Development of an Innovation Corridor Testbed for Shared Electric Connected and Automated Transportation," Institute of Transportation Studies, Working Paper Series qt99q6w075, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt99q6w075
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/99q6w075.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    2. Xu, Yanzhi & Li, Hanyan & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2017. "Eco-driving for transit: An effective strategy to conserve fuel and emissions," Applied Energy, Elsevier, vol. 194(C), pages 784-797.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    2. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    3. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    4. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    5. Ali Najmi & Taha H. Rashidi & Alireza Abbasi & S. Travis Waller, 2017. "Reviewing the transport domain: an evolutionary bibliometrics and network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 843-865, February.
    6. Marziyeh Karimi & Amir Hossein Niknamfar & Seyed Hamid Reza Pasandideh, 2017. "Two-stage single period inventory management for a manufacturing vendor under green-supplier supply chain," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 704-718, December.
    7. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    8. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    9. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    10. S. S. Ganji & A. N. Ahangar & Samaneh Jamshidi Bandari, 2022. "Evaluation of vehicular emissions reduction strategies using a novel hybrid method integrating BWM, Q methodology and ER approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11576-11614, October.
    11. Guensler, Randall & Liu, Haobing & Xu, Xiaodan & Lu, Hongyu & Rodgers, Michael O., 2018. "MOVES-Matrix for High-Performance Emission Rate Model Applications," Institute of Transportation Studies, Working Paper Series qt3xp5z35t, Institute of Transportation Studies, UC Davis.
    12. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    13. Suzuki, Yoshinori, 2016. "A dual-objective metaheuristic approach to solve practical pollution routing problem," International Journal of Production Economics, Elsevier, vol. 176(C), pages 143-153.
    14. Mrabti, Nassim & Hamani, Nadia & Boulaksil, Youssef & Amine Gargouri, Mohamed & Delahoche, Laurent, 2022. "A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    15. Berling, Peter & Eng-Larsson, Fredrik, 2017. "Environmental implications of transport contract choice - capacity investment and pricing under volume and capacity contracts," European Journal of Operational Research, Elsevier, vol. 261(1), pages 129-142.
    16. Panagiotis Fafoutellis & Eleni G. Mantouka & Eleni I. Vlahogianni, 2020. "Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    17. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    18. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    19. Juan Francisco Coloma & Marta García & Gonzalo Fernández & Andrés Monzón, 2021. "Environmental Effects of Eco-Driving on Courier Delivery," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    20. Yutao Chen & Nazar Rozkvas & Mircea Lazar, 2020. "Driving Mode Optimization for Hybrid Trucks Using Road and Traffic Preview Data," Energies, MDPI, vol. 13(20), pages 1-18, October.

    More about this item

    Keywords

    Engineering; Autonomous vehicles; Connected vehicles; Electric vehicles; Pollutants; Test facilities; Traffic simulation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt99q6w075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.