IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt6xb85088.html
   My bibliography  Save this paper

Revisiting Average Trip Length Defaults and Adjustment Factors for Quantifying VMT Reductions from Car Share, Bike Share, and Scooter Share Services

Author

Listed:
  • Volker, Jamey
  • Handy, Susan
  • Kendall, Alissa
  • Barbour, Elisa

Abstract

Under California’s Cap-and-Trade program, the State’s portion of the proceeds from Cap-and-Trade auctions is deposited in the Greenhouse Gas Reduction Fund (GGRF). The Legislature and Governor enact budget appropriations from the GGRF for State agencies to invest in projects that help achieve the State’s climate goals. These investments are collectively called California Climate Investments. Senate Bill (SB) 862 requires the California Air Resources Board (CARB) to develop guidance on reporting and quantification methods for all State agencies that receive appropriations from the GGRF. CARB may review and update quantification methodologies, as needed. CARB developed quantification methodologies to provide project-level GHG estimates for administering agencies to use when selecting projects for funding. CARB’s quantification methods use a similar formula to measure GHG emissions reductions from both new bike share programs and new car share programs. That formula includes as inputs both average trip length per bike or car share trip, and an adjustment factor to account for trips that either would not have been previously made (induced new vehicle trips) or would substitute for non-private automobile trips (like transit or walking trips). This report summarizes outcomes from a literature review and analysis of shared mobility program data to (1) identify average trip length defaults for car share, bike share, and scooter share projects, and (2) determine whether and how the current adjustment factors used for car share and bike share projects could be modified to better reflect emerging data and methods for estimating VMT and greenhouse gas (GHG) emissions reductions from shared mobility programs. View the NCST Project Webpage

Suggested Citation

  • Volker, Jamey & Handy, Susan & Kendall, Alissa & Barbour, Elisa, 2020. "Revisiting Average Trip Length Defaults and Adjustment Factors for Quantifying VMT Reductions from Car Share, Bike Share, and Scooter Share Services," Institute of Transportation Studies, Working Paper Series qt6xb85088, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt6xb85088
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6xb85088.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Namazu, Michiko & Dowlatabadi, Hadi, 2018. "Vehicle ownership reduction: A comparison of one-way and two-way carsharing systems," Transport Policy, Elsevier, vol. 64(C), pages 38-50.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Rotaris, 2021. "Carsharing Services in Italy: Trends and Innovations," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    2. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Doll, Claus & Krauss, Konstantin, 2022. "Nachhaltige Mobilität und innovative Geschäftsmodelle," Studien zum deutschen Innovationssystem 10-2022, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    4. Yue Wang & Yuanfang Zhu & Chunyi Wei & Meilan Jiang & Toshiyuki Yamamoto, 2024. "Carsharing Worldwide: Case Studies on Carsharing Development in China, Europe, Japan, and the United States," Sustainability, MDPI, vol. 16(10), pages 1-23, May.
    5. Mariana de Oliveira Lage & Cláudia Aparecida Soares Machado & Cristiano Martins Monteiro & Clodoveu Augusto Davis & Charles Lincoln Kenji Yamamura & Fernando Tobal Berssaneti & José Alberto Quintanilh, 2021. "Using Hierarchical Facility Location, Single Facility Approach, and GIS in Carsharing Services," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    6. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    7. Diana, Marco & Chicco, Andrea, 2022. "The spatial reconfiguration of parking demand due to car sharing diffusion: a simulated scenario for the cities of Milan and Turin (Italy)," Journal of Transport Geography, Elsevier, vol. 98(C).
    8. Silvestri, Alessandro & Foudi, Sébastien & Galarraga, Ibon & Ansuategi, Alberto, 2021. "The contribution of carsharing to low carbon mobility: Complementarity and substitution with other modes," Research in Transportation Economics, Elsevier, vol. 85(C).
    9. Shaheen, Susan PhD & Cohen, Adam & Farrar, Emily, 2019. "Carsharing's Impact and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2f5896tp, Institute of Transportation Studies, UC Berkeley.
    10. Martin Ritter & Heiner Schanz, 2021. "Carsharing Business Models’ Strategizing Mindsets Regarding Environmental Sustainability," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    11. Sweet, Matthias N. & Scott, Darren M., 2021. "Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?," Journal of Transport Geography, Elsevier, vol. 96(C).
    12. Cantelmo, Guido & Amini, Roja Ezzati & Monteiro, Mayara Moraes & Frenkel, Amnon & Lerner, Ofer & Tavory, Sharon Shoshany & Galtzur, Ayelet & Kamargianni, Maria & Shiftan, Yoram & Behrischi, Christiane, 2022. "Aligning users’ and stakeholders’ needs: How incentives can reshape the carsharing market," Transport Policy, Elsevier, vol. 126(C), pages 306-326.
    13. Lide Yang & Jiemin Xie & Tuo Sun & Junxian Wu & Jinquan Hou & Shuangjian Yang, 2023. "Application of Autonomous Transportation Systems: Detection of a Potential Sub-Leasing Type of Carsharing," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    14. Ana María Arbeláez Vélez & Andrius Plepys, 2021. "Car Sharing as a Strategy to Address GHG Emissions in the Transport System: Evaluation of Effects of Car Sharing in Amsterdam," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    15. Wen, Xiao & Ranjbari, Andisheh & Qi, Fan & Clewlow, Regina R. & MacKenzie, Don, 2021. "Challenges in credibly estimating the travel demand effects of mobility services," Transport Policy, Elsevier, vol. 103(C), pages 224-235.
    16. Marc Kuhn & Viola Marquardt & Sarah Selinka, 2021. "“Is Sharing Really Caring?”: The Role of Environmental Concern and Trust Reflecting Usage Intention of “Station-Based” and “Free-Floating”—Carsharing Business Models," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    17. Chicco, Andrea & Diana, Marco & Loose, Willi & Nehrke, Gunnar, 2022. "Comparing car ownership reduction patterns among members of different car sharing schemes operating in three German inner-city areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 370-385.
    18. Sohani Liyanage & Hussein Dia, 2020. "An Agent-Based Simulation Approach for Evaluating the Performance of On-Demand Bus Services," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    19. Haustein, Sonja & Kroesen, Maarten, 2022. "Shifting to more sustainable mobility styles: A latent transition approach," Journal of Transport Geography, Elsevier, vol. 103(C).
    20. Pan, Alexandra Q. & Martin, Elliot W. & Shaheen, Susan A., 2022. "Is access enough? A spatial and demographic analysis of one-way carsharing policies and practice," Transport Policy, Elsevier, vol. 127(C), pages 103-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt6xb85088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.