IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt6r64v86z.html
   My bibliography  Save this paper

Drivers of Change in a World of Mobility Disruption: An Overview of Long Distance Travel, Shared Mobility, and Automated Vehicles

Author

Listed:
  • Berliner, Rosaria

Abstract

Electrification, automation, and shared mobility, known as the 3 Revolutions (3R) will fundamentally change transportation globally. The 3 Revolutions are coming, and they will change existing travel behavior such as long-distance trips and create new questions such as who will drive for shared mobility and who will buy automated vehicles. Long distance travel, drivers for on-demand ride services, and the adoption of automated vehicles have been of recent interest to researchers, stakeholders, and policy makers but have just begun to be studied. Long-distance travel research is limited due to the lack of robust data and the complexity of defining a long-distance trip. The patterns of infrequent long-distance trips are poorly understood especially compared to the better studied (and understood) local daily travel patterns. This study contributes to filling that gap by investigating the factors that affect the frequency of long-distance trips of Californian millennials and members of the preceding Generation X. The data used was collected with an online survey administered in fall 2015 to study the mobility of these age groups. The survey collected information on several travel-related variables, including the number of long-distance trips (defined as trips longer than 100 miles, one way) made by various modes during the previous 12 months. Six negative binomial regression models of long-distance travel separated by purpose (business or leisure) and mode (overall travel versus air) are estimated. The study explores the relationship of long-distance trip formation with several sociodemographic, land use and attitudinal variables. Consistent with expectations, individual income positively affects the number of long-distance trips made by each individual. Among the attitudinal variables, the individuals who are adventurers, have higher “variety seeking” attitudes and are more interested in adopting new technologies are found to make a larger number of long-distance trips. On the other hand, those who prefer to shop in brick-and-mortar stores rather than online are found to have lower levels of long-distance travel.

Suggested Citation

  • Berliner, Rosaria, 2018. "Drivers of Change in a World of Mobility Disruption: An Overview of Long Distance Travel, Shared Mobility, and Automated Vehicles," Institute of Transportation Studies, Working Paper Series qt6r64v86z, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt6r64v86z
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6r64v86z.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    3. Hsu, Chin-Lung & Lu, Hsi-Peng & Hsu, Huei-Hsia, 2007. "Adoption of the mobile Internet: An empirical study of multimedia message service (MMS)," Omega, Elsevier, vol. 35(6), pages 715-726, December.
    4. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
    5. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    6. Campbell, Amy R. & Ryley, Tim & Thring, Rob, 2012. "Identifying the early adopters of alternative fuel vehicles: A case study of Birmingham, United Kingdom," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1318-1327.
    7. Ozaki, Ritsuko & Sevastyanova, Katerina, 2011. "Going hybrid: An analysis of consumer purchase motivations," Energy Policy, Elsevier, vol. 39(5), pages 2217-2227, May.
    8. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    9. Wang, Ning & Tang, Linhao & Pan, Huizhong, 2018. "Analysis of public acceptance of electric vehicles: An empirical study in Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 284-291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plötz, Patrick & Schneider, Uta & Globisch, Joachim & Dütschke, Elisabeth, 2014. "Who will buy electric vehicles? Identifying early adopters in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 96-109.
    2. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    3. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    4. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    5. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    6. Rosales-Tristancho, Abel & Brey, Raúl & Carazo, Ana F. & Brey, J. Javier, 2022. "Analysis of the barriers to the adoption of zero-emission vehicles in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 19-43.
    7. Chandra, Minal, 2022. "Investigating the impact of policies, socio-demography and national commitments on electric-vehicle demand: Cross-country study," Journal of Transport Geography, Elsevier, vol. 103(C).
    8. Saiful Hasan & Terje Andreas Mathisen, 2020. "Policy measures for electric vehicle adoption. A review of evidence from Norway and China," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 25-46.
    9. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    10. Wolf, Ingo & Schröder, Tobias & Neumann, Jochen & de Haan, Gerhard, 2015. "Changing minds about electric cars: An empirically grounded agent-based modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 269-285.
    11. Sovacool, Benjamin K. & Axsen, Jonn, 2018. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 730-746.
    12. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    13. White, Lee V. & Sintov, Nicole D., 2017. "You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 94-113.
    14. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    15. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    16. Han, Liu & Wang, Shanyong & Zhao, Dingtao & Li, Jun, 2017. "The intention to adopt electric vehicles: Driven by functional and non-functional values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 185-197.
    17. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    18. Sanguinetti, Angela & Favetti, Matthew & Hirschfelt, Kate & Kong, Nathaniel & Chakraborty, Debapriya & Alston-Stepnitz, Eli & Ma, Howard, 2023. "Developing a Vehicle Cost Calculator to Promote Electric Vehicle Adoption Among TNC Drivers," Institute of Transportation Studies, Working Paper Series qt1v44b5kp, Institute of Transportation Studies, UC Davis.
    19. Krause, Rachel M. & Carley, Sanya R. & Lane, Bradley W. & Graham, John D., 2013. "Perception and reality: Public knowledge of plug-in electric vehicles in 21 U.S. cities," Energy Policy, Elsevier, vol. 63(C), pages 433-440.
    20. Seiho Kim & Jaesik Lee & Chulung Lee, 2017. "Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?," Sustainability, MDPI, vol. 9(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt6r64v86z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.