IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt5x31w1vd.html
   My bibliography  Save this paper

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

Author

Listed:
  • Zhao, Hengbing
  • Burke, Andy

Abstract

Proton Exchange Membrane fuel cell (PEMFC) technology is one of the most attractive candidates for transportation applications due to its inherently high efficiency and high power density. However, the fuel cell system efficiency can suffer because of the need for forced air supply and water-cooling systems. Hence the operating strategy of the fuel cell system can have a significant impact on the fuel cell system efficiency and thus vehicle fuel economy. The key issues are how the fuel cell back pressure and air flow through the fuel cell are controlled. One approach is fixed back pressure control. The other is optimum varying back pressure control. In both cases, the air flow stoichiometry is optimized. In this paper, a dynamic forward-looking vehicle model with a dynamic fuel cell system model is employed. The effects of different fuel cell system operation modes and different power split strategies on fuel economy of fuel cell hybrid vehicles are simulated. The simulation results of light duty vehicles on various driving cycles indicate a significant improvement in fuel economy for optimum varying back pressure operation compared to high fixed back pressure operation. For various fuel cell system operation modes, the load leveling control can significantly improve fuel economy on some aggressive driving cycles such as US06. The vehicle with a small fuel cell system becomes more efficient during low speed or low power demand driving by avoiding low fuel cell output power region.

Suggested Citation

  • Zhao, Hengbing & Burke, Andy, 2009. "Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles," Institute of Transportation Studies, Working Paper Series qt5x31w1vd, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt5x31w1vd
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/5x31w1vd.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burke, Andrew & Zhu, Lin, 2015. "The economics of the transition to fuel cell vehicles with natural gas, hybrid-electric vehicles as the bridge," Research in Transportation Economics, Elsevier, vol. 52(C), pages 65-71.
    2. Burke, Andrew & Zhao, Hengbing, 2012. "Energy Saving and Cost Projections for Advanced Hybrid, Battery Electric, and Fuel Cell Vehicles in 2015-2030," Institute of Transportation Studies, Working Paper Series qt80v1z6rd, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    UCD-ITS-RR-09-12; Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt5x31w1vd. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.