IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt4mq5p6sd.html
   My bibliography  Save this paper

Development of Performance-Based Specifications for Asphalt Rubber Binder: Interim Report on Phase 1 and Phase 2 Testing

Author

Listed:
  • Jones, David
  • Rizvi, Hashim Raza
  • Liang, Yanlong
  • Hung, Shawn
  • Buscheck, Jeffrey
  • Alavi, Mohammad Zia
  • Hofko, Bernhard

Abstract

In the United States, the Superpave Asphalt Binder Performance Grading (PG) system proposed by the Strategic Highway Research Program (SHRP) is the most common method used to characterize the performance-related properties of unmodified and polymer-modified asphalt binders. Dynamic shear modulus (G*) and phase angle (δ) are the two main binder properties and they are measured using a dynamic shear rheometer (DSR) with parallel plate geometry and either a 1-mm or 2-mm gap between the plates. Since these Superpave parameters were developed for binders that do not contain additives or particulates, the California Department of Transportation (Caltrans) does not use them for asphalt rubber binder specifications. Instead, penetration and viscosity are used as acceptance of quality control; however, these parameters do not necessarily provide a satisfactory link between the measured binder properties and potential performance in the field over a range of operating temperatures. In California, current specifications require that crumb rubber particles used to produce asphalt rubber binder in the “wet process” must be smaller than 2.36 mm (i.e., 100 percent passing the #8 sieve), and typically these particles vary in size between 1 mm and 2 mm. Consequently, when the parallel plate geometry is used to test this type of binder, the larger incompletely digested rubber particles can contact the plates. If this occurs, the rubber particle rheology can potentially dominate the results, which in turn may not be representative of the modified binder as a whole. To address this problem, a potentially more appropriate DSR testing protocol using concentric cylinder geometry was investigated in Phase 1 of this study to explore an alternative means of determining the performance properties of asphalt rubber binders. Phase 2 of the study, documented in this report, continued the investigation into the use of the concentric cylinder geometry and alternate parallel plate geometry with a 3-mm gap. The use of these geometries for intermediate-temperature testing and multiple stress creep recovery testing was also investigated, along with modified procedures for short- and long-term aging in the rolling thin-film oven and pressurized aging vessel, respectively, and specimen preparation procedures for bending beam rheometer (BBR) testing. Limited mix testing was also conducted to relate high- and low-temperature mix performance to the performance grades determined for the binders used in the mixes. The concentric cylinder testing approach to measuring the rheological properties of asphalt rubber binders is considered feasible, and that with its use, the edge effects and trimming issues associated with parallel plate testing can be eliminated. However, the concentric cylinder method requires a longer testing time and a larger binder sample than the parallel plate test method. Initial findings from performance grading and related mix testing indicate that the incompletely digested rubber particles, which have different sensitivities to temperature and applied stress and strain than the asphalt binder, appear to dominate the test results. This will need to be factored into analyses and interpretation of rheology and mix performance test results. The proposed modifications to the short- and long-term aging procedures and to the BBR specimen preparation procedures are considered to be more aligned with the original intent of the tests and will likely reduce the variability between replicate specimens during testing. The results from Phase 2 support the continuation of testing, which should be in line with the original workplan and objectives of this research effort. The research should continue to refine the testing procedures on additional field binder sources, assess the repeatability and reproducibility of any proposed test methods, and evaluate the applicability of the results to the actual performance properties of mixes produced with asphalt rubber binders.

Suggested Citation

  • Jones, David & Rizvi, Hashim Raza & Liang, Yanlong & Hung, Shawn & Buscheck, Jeffrey & Alavi, Mohammad Zia & Hofko, Bernhard, 2017. "Development of Performance-Based Specifications for Asphalt Rubber Binder: Interim Report on Phase 1 and Phase 2 Testing," Institute of Transportation Studies, Working Paper Series qt4mq5p6sd, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt4mq5p6sd
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/4mq5p6sd.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jones, David & Rizvi, Hashim & Brotschi, Julian, 2023. "Development of Performance-Based Specifications for Asphalt Rubber Binder: Phase 2g Additional Testing of Five Plant-Sampled Binders and RHMA G Mixes," Institute of Transportation Studies, Working Paper Series qt1qb0924p, Institute of Transportation Studies, UC Davis.
    2. Liang, Yanlong & Jones, David & Buscheck, Jeffrey & Harvey, John & Wu, Rongzong & Jiao, Liya, 2021. "Increasing Crumb Rubber Usage by Adding Small Amounts of Crumb Rubber Modifier in Hot-Mix Asphalt. Phase 1: Laboratory Tests and CalME Simulations," Institute of Transportation Studies, Working Paper Series qt0bx8b68t, Institute of Transportation Studies, UC Davis.
    3. Jones, David & Rizvi, Hasham & Brotschi, Julian, 2023. "Development of Performance-Based Specifications for Asphalt Rubber Binder: Phase 2g Testing of Plant-Sampled Binders and RHMA-G Mixes," Institute of Transportation Studies, Working Paper Series qt39w1j16d, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt4mq5p6sd. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.