IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt1qb0924p.html
   My bibliography  Save this paper

Development of Performance-Based Specifications for Asphalt Rubber Binder: Phase 2g Additional Testing of Five Plant-Sampled Binders and RHMA G Mixes

Author

Listed:
  • Jones, David
  • Rizvi, Hashim
  • Brotschi, Julian

Abstract

The work discussed in this interim report is part of a larger study, funded by the California Department of Transportation, with the objective of developing and recommending testing procedures and criteria for performance-based specifications of asphalt rubber binders used in gap-graded and open-graded mixes using current Superpave performance grade (PG) equipment. Work covered the testing of five plant-produced binders, the base binders used to produce them, and the gap-graded rubberized hot mix asphalt mixes produced with them. The following important observations from the binder rheology tests were made: Although the low-temperature performance grades appeared to be reasonable, the high-temperature grades appeared to be unrealistically high, while the intermediate-temperature grades appeared to be potentially lower than anticipated when compared to the base binders. A comparison of the concentric cylinder and parallel plate (3 mm gap) geometries indicated that the results between the two geometries are different and are likely to be higher than the precision and bias of the individual procedures. Precision and bias statements for these procedures had not been developed at the time of preparing this report. Consistent trends in results were observed between high-temperature PG/true grade, Delta TC, and non-recoverable creep compliance at 3.2 kPa. Observations from previous testing and during this phase of the study indicated that incompletely digested rubber particles—which have different sensitivities to temperature, aging, and applied stress and strain than the base asphalt binder—appeared to have a dominant influence on results and caused variability between results, regardless of the testing geometry used. Considering these incompletely digested particles as part of a homogenous binder may therefore not be appropriate when determining performance grades. Work is continuing in Phase 3 of this study to adjust testing procedures to account for the influence that these incompletely digested particles have on results. The proposed modifications to short- and long-term aging procedures (i.e., rolling thin film oven and pressure aging vessel) and to the bending beam rheometerspecimen preparation procedures developed in Phase 2 are considered to be more aligned with the original intent of the tests and will likely reduce the variability between replicate specimens during testing. Preliminary test results indicate that Fourier transformed infrared spectroscopy is a potentially valid method for quantifying rubber content in rubber-modified binders.

Suggested Citation

  • Jones, David & Rizvi, Hashim & Brotschi, Julian, 2023. "Development of Performance-Based Specifications for Asphalt Rubber Binder: Phase 2g Additional Testing of Five Plant-Sampled Binders and RHMA G Mixes," Institute of Transportation Studies, Working Paper Series qt1qb0924p, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt1qb0924p
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/1qb0924p.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jones, David & Rizvi, Hashim Raza & Liang, Yanlong & Hung, Shawn & Buscheck, Jeffrey & Alavi, Mohammad Zia & Hofko, Bernhard, 2017. "Development of Performance-Based Specifications for Asphalt Rubber Binder: Interim Report on Phase 1 and Phase 2 Testing," Institute of Transportation Studies, Working Paper Series qt4mq5p6sd, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Yanlong & Jones, David & Buscheck, Jeffrey & Harvey, John & Wu, Rongzong & Jiao, Liya, 2021. "Increasing Crumb Rubber Usage by Adding Small Amounts of Crumb Rubber Modifier in Hot-Mix Asphalt. Phase 1: Laboratory Tests and CalME Simulations," Institute of Transportation Studies, Working Paper Series qt0bx8b68t, Institute of Transportation Studies, UC Davis.
    2. Jones, David & Rizvi, Hasham & Brotschi, Julian, 2023. "Development of Performance-Based Specifications for Asphalt Rubber Binder: Phase 2g Testing of Plant-Sampled Binders and RHMA-G Mixes," Institute of Transportation Studies, Working Paper Series qt39w1j16d, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    Engineering; asphalt rubber binder; AR binder; performance grade;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt1qb0924p. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.