IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt25n372jd.html
   My bibliography  Save this paper

Detailed Analysis of Urban Station Siting for California Hydrogen Highway Network

Author

Listed:
  • Nicholas, Michael A
  • Ogden, Joan M

Abstract

Station availability is a major concern when the deployment of an alternative fuel such as hydrogen is considered. Too few stations will make the network inconvenient, while too many will make the refueling network cost prohibitive. As a follow-up analysis to two station siting analyses completed by the authors for the California Hydrogen Highway Network, this report takes a closer look at the regional differences between the four main metropolitan areas in California: Greater Los Angeles, the San Francisco Bay Area, the Sacramento metropolitan area, and the San Diego metropolitan area. The purpose of this analysis is twofold: to generate a general model to assess hydrogen needs in different regions, and to apply the model to compare its results with the California hydrogen highways report. In the analysis that follows, average driving time to the nearest station (convenience metric) is used to determine the number of stations necessary for each region. By using convenience to determine the share of stations, regions that are less dense will be served as well as those regions with high density. The results suggest that the percentage of stations needed to meet a convenience target differs among regions depending on density. For example, a 4-min average travel time in Sacramento requires 7.2% of stations, whereas it requires only 3.3% of stations in Los Angeles. The developed equation predicts station needs as a function of population density and a desired level of convenience; if the caveats explained in the paper are observed, the prediction equation can be applied to any region.

Suggested Citation

  • Nicholas, Michael A & Ogden, Joan M, 2007. "Detailed Analysis of Urban Station Siting for California Hydrogen Highway Network," Institute of Transportation Studies, Working Paper Series qt25n372jd, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt25n372jd
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/25n372jd.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurani, Kenneth & Turrentine, Thomas & Sperling, Daniel, 1996. "Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey," Institute of Transportation Studies, Working Paper Series qt0sb956wq, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ogden, Joan & Nicholas, Michael, 2011. "Analysis of a "cluster" strategy for introducing hydrogen vehicles in Southern California," Energy Policy, Elsevier, vol. 39(4), pages 1923-1938, April.
    2. Bersani, Chiara & Minciardi, Riccardo & Sacile, Roberto & Trasforini, Eva, 2009. "Network planning of fuelling service stations in a near-term competitive scenario of the hydrogen economy," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 55-71, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axsen, Jonn, 2010. "Interpersonal Influence within Car Buyers’ Social Networks: Observing Consumer Assessment of Plug-in Hybrid Electric Vehicles (PHEVs) and the Spread of Pro-Societal Values," Institute of Transportation Studies, Working Paper Series qt8p32d18k, Institute of Transportation Studies, UC Davis.
    2. Anita Gärling & John Thøgersen, 2001. "Marketing of electric vehicles," Business Strategy and the Environment, Wiley Blackwell, vol. 10(1), pages 53-65, January.
    3. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    4. Sperling, Daniel, 2001. "Public-Private Technology R&D Partnerships: Lessons from US Partnership for a New Generation of Vehicles," Institute of Transportation Studies, Working Paper Series qt2218n7mv, Institute of Transportation Studies, UC Davis.
    5. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    6. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    7. Tamara L. Sheldon & J. R. DeShazo & Richard T. Carson, 2017. "Electric And Plug-In Hybrid Vehicle Demand: Lessons For An Emerging Market," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 695-713, April.
    8. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    9. Kurani, Kenneth S & Axsen, Jonn & Caperello, Nicolette & Davies, Jamie & Stillwater, Tai, 2009. "Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program," Institute of Transportation Studies, Working Paper Series qt9361r9h7, Institute of Transportation Studies, UC Davis.
    10. Xue, Yixi & Zhang, Yi & Wang, Zhuoli & Tian, Shuo & Xiong, Qian & Li, Lydia Qianqian, 2023. "Effects of incentive policies on the purchase intention of electric vehicles in China: Psychosocial value and family ownership," Energy Policy, Elsevier, vol. 181(C).
    11. Bruno Faivre d'Arcier & Odile Andan & Charles Raux, 1998. "Stated adaptation surveys and choice process: Some methodological issues," Post-Print halshs-00139993, HAL.
    12. Sperling, Daniel, 2001. "Public-private technology R&D partnerships: lessons from US partnership for a new generation of vehicles," Transport Policy, Elsevier, vol. 8(4), pages 247-256, October.
    13. Willett Kempton & Nathaniel S. Pearre & Randall Guensler & Vetri V. Elango, 2023. "Influence of Battery Energy, Charging Power, and Charging Locations upon EVs’ Ability to Meet Trip Needs," Energies, MDPI, vol. 16(5), pages 1-23, February.
    14. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
    15. Heffner, Reid & Kurani, Kenneth S. & Turrentine, Thomas S., 2007. "Symbolism In Early Markets For Hybrid Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt0v04n3rg, Institute of Transportation Studies, UC Davis.
    16. Turrentine, Tom & Garas, Dahlia & Lentz, Andy & Woodjack, Justin, 2011. "The UC Davis MINI E Consumer Study," Institute of Transportation Studies, Working Paper Series qt15g9v24c, Institute of Transportation Studies, UC Davis.
    17. Sperling, Dan, 2001. "Public-private technology R&D partnerships: lessons from US partnership for a new generation of vehicles," University of California Transportation Center, Working Papers qt2q59d0bz, University of California Transportation Center.
    18. Krause, Rachel M. & Carley, Sanya R. & Lane, Bradley W. & Graham, John D., 2013. "Perception and reality: Public knowledge of plug-in electric vehicles in 21 U.S. cities," Energy Policy, Elsevier, vol. 63(C), pages 433-440.
    19. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    20. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.

    More about this item

    Keywords

    UCD-ITS-RP-07-07; Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt25n372jd. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.