IDEAS home Printed from https://ideas.repec.org/p/cdl/econwp/qt98f9410b.html
   My bibliography  Save this paper

Sustainable investing and the cross-section of returns and maximum drawdown

Author

Listed:
  • Goldberg, Lisa R
  • Mouti, Saad

Abstract

We use supervised learning to identify factors that predict the cross-section of returns and maximum drawdown for stocks in the US equity market. Our data run from January 1970 to December 2019 and our analysis includes ordinary least squares, penalized linear regressions, tree-based models, and neural networks. We find that the most important predictors tended to be consistent across models, and that non-linear models had better predictive power than linear models. Predictive power was higher in calm periods than in stressed periods. Environmental, social, and governance indicators marginally impacted the predictive power of non-linear models in our data, despite their negative correlation with maximum drawdown and positive correlation with returns. Upon exploring whether ESG variables are captured by some models, we find that ESG data contribute to the prediction nonetheless.

Suggested Citation

  • Goldberg, Lisa R & Mouti, Saad, 2022. "Sustainable investing and the cross-section of returns and maximum drawdown," Department of Economics, Working Paper Series qt98f9410b, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
  • Handle: RePEc:cdl:econwp:qt98f9410b
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/98f9410b.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Peter Carr & Hongzhong Zhang & Olympia Hadjiliadis, 2011. "Maximum Drawdown Insurance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1195-1230.
    5. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    6. Anderson, Robert M. & Bianchi, Stephen W. & Goldberg, Lisa R., 2012. "Will My Risk Parity Strategy Outperform?," Department of Economics, Working Paper Series qt23t2s950, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa R. Goldberg & Ola Mahmoud, 2014. "Drawdown: From Practice to Theory and Back Again," Papers 1404.7493, arXiv.org, revised Sep 2016.
    2. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    3. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    4. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    5. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Cahiers de la Maison des Sciences Economiques b05078, Université Panthéon-Sorbonne (Paris 1).
    6. Broda, Simon A. & Krause, Jochen & Paolella, Marc S., 2018. "Approximating expected shortfall for heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 184-203.
    7. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    8. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Post-Print halshs-00196443, HAL.
    9. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    10. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    11. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    12. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    13. Maria Logvaneva & Mikhail Tselishchev, 2022. "On a Stochastic Model of Diversification," Papers 2204.01284, arXiv.org.
    14. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    15. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    16. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    17. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    18. Mikhail Tselishchev, 2019. "On the Concavity of Expected Shortfall," Papers 1910.00640, arXiv.org.
    19. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    20. Doron Nisani, 2023. "On the General Deviation Measure and the Gini coefficient," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(3), pages 599-610, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:econwp:qt98f9410b. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/ibbrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.