IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt7bd3t95j.html
   My bibliography  Save this paper

Does china income FSDs follow Benford? A comparison between Chinese income first significant digit distribution with Benford distribution

Author

Listed:
  • Fu, Qiuzi
  • Villas-Boas, Sofia B
  • Judge, George

Abstract

Since Benford’s law is an empirical phenomenon that occurs in a range of data sets, this raises the question as to whether or not the same thing might be true in terms of the Chinese income distribution data. We focus on the first significant digit (FSD) distribution of Chinese micro income data from the 2005 Inter-Census sample, which corresponds to 1% of Chinese population and other micro income data from the China family panel studies (CFPS) and Chinese General Social Survey (CGSS). We use information theoretic-entropy based methods to investigate the degree to which Benford’s FSD law is consistent with the FSD of Chinese income data and our findings suggest consistency between the Chinese FSD income distribution and Benford’s distribution. The close connection between the two distributions has implications for the quality of the sample of Chinese micro data.

Suggested Citation

  • Fu, Qiuzi & Villas-Boas, Sofia B & Judge, George, 2019. "Does china income FSDs follow Benford? A comparison between Chinese income first significant digit distribution with Benford distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7bd3t95j, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt7bd3t95j
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7bd3t95j.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tam Cho, Wendy K. & Gaines, Brian J., 2007. "Breaking the (Benford) Law: Statistical Fraud Detection in Campaign Finance," The American Statistician, American Statistical Association, vol. 61, pages 218-223, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronelle Burger & Canh Thien Dang & Trudy Owens, 2017. "Better performing NGOs do report more accurately: Evidence from investigating Ugandan NGO financial accounts," Discussion Papers 2017-10, University of Nottingham, CREDIT.
    2. Roy Cerqueti & Claudio Lupi, 2023. "Severe testing of Benford’s law," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 677-694, June.
    3. Wang, Delu & Chen, Fan & Mao, Jinqi & Liu, Nannan & Rong, Fangyu, 2022. "Are the official national data credible? Empirical evidence from statistics quality evaluation of China's coal and its downstream industries," Energy Economics, Elsevier, vol. 114(C).
    4. Rosa Abrantes-Metz & Sofia Villas-Boas & George Judge, 2011. "Tracking the Libor rate," Applied Economics Letters, Taylor & Francis Journals, vol. 18(10), pages 893-899.
    5. Lee, Kang-Bok & Han, Sumin & Jeong, Yeasung, 2020. "COVID-19, flattening the curve, and Benford’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    6. Kishore Singh & Peter Best, 2020. "Implementing Benford’s Law in Continuous Monitoring Applications," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 19(2), pages 379-404, June.
    7. Yan Bao & Chuo-Hsuan Lee & Frank Heilig & Edward J. Lusk, 2018. "Empirical Information on the Small Size Effect Bias Relative to the False Positive Rejection Error for Benford Test-Screening," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(2), pages 1-9, February.
    8. Gamermann, Daniel & Antunes, Felipe Leite, 2018. "Statistical analysis of Brazilian electoral campaigns via Benford’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 171-188.
    9. Shi, Jing & Ausloos, Marcel & Zhu, Tingting, 2018. "Benford’s law first significant digit and distribution distances for testing the reliability of financial reports in developing countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 878-888.
    10. Philip E Hulme & Danish A Ahmed & Phillip J Haubrock & Brooks A Kaiser & Melina Kourantidou & Boris Leroy & Shana M Mcdermott, 2024. "Widespread imprecision in estimates of the economic costs of invasive alien species worldwide," Post-Print hal-04633043, HAL.
    11. Rabeea Sadaf, 2017. "Advanced Statistical Techniques For Testing Benford'S Law," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(2), pages 229-238, December.
    12. Dang, Canh Thien & Owens, Trudy, 2020. "Does transparency come at the cost of charitable services? Evidence from investigating British charities," Journal of Economic Behavior & Organization, Elsevier, vol. 172(C), pages 314-343.
    13. Matthew A. Cole & David J. Maddison & Liyun Zhang, 2020. "Testing the emission reduction claims of CDM projects using the Benford’s Law," Climatic Change, Springer, vol. 160(3), pages 407-426, June.
    14. Etienne Harb & Nohade Nasrallah & Rim El Khoury & Khaled Hussainey, 2022. "Applying Benford’s Law to detect accounting data manipulation in the pre-and post-financial engineering periods: Evidence from Lebanon," Working Papers of LaRGE Research Center 2022-10, Laboratoire de Recherche en Gestion et Economie (LaRGE), Université de Strasbourg.
    15. Vadim S. Balashov & Yuxing Yan & Xiaodi Zhu, 2020. "Who Manipulates Data During Pandemics? Evidence from Newcomb-Benford Law," Papers 2007.14841, arXiv.org, revised Jan 2021.
    16. Fang, Guojun & Chen, Qihong, 2020. "Several common probability distributions obey Benford’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. John Morrow, 2014. "Benford's Law, Families of Distributions and a Test Basis," CEP Discussion Papers dp1291, Centre for Economic Performance, LSE.
    18. Edward J. Lusk & Michael Halperin, 2014. "Detecting Newcomb-Benford Digital Frequency Anomalies in the Audit Context: Suggested Chi2 Test Possibilities," Accounting and Finance Research, Sciedu Press, vol. 3(2), pages 191-191, May.
    19. Stefan Günnel & Karl-Heinz Tödter, 2009. "Does Benford’s Law hold in economic research and forecasting?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 36(3), pages 273-292, August.
    20. Lee, Joanne & Cho, Wendy K. Tam & Judge, George G., 2010. "Stigler's approach to recovering the distribution of first significant digits in natural data sets," Statistics & Probability Letters, Elsevier, vol. 80(2), pages 82-88, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt7bd3t95j. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.