IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt3gx868tg.html
   My bibliography  Save this paper

Price and Non-Price Influences on Water Conservation: An Econometric Model of Aggregate Demand under Nonlinear Budget Constraint

Author

Listed:
  • Corral, Leonardo
  • Fisher, Anthony C.
  • Hatch, Nile W.

Abstract

This paper develops a model of residential water demand under a nonlinear budget constraint. The theoretical model for an individual consumer is adapted to yield an aggregate model that preserves the structure of the individual demand function, and that can be used with aggregate (water district level) data. The model is used to study the influence of pricing and non-price conservation programs on consumption and conservation behavior in three water districts in the San Francisco Bay Area, over a 10-year period that includes both drought and normal years. Empirical results show that pricing can be effective in reducing water consumption, particularly during the annual dry season, and during longer drought episodes. The effect is mitigated when non-price conservation programs are included in the analysis. Among these, use restrictions and landscaping audits appear to be particularly effective in inducing conservation.

Suggested Citation

  • Corral, Leonardo & Fisher, Anthony C. & Hatch, Nile W., 1999. "Price and Non-Price Influences on Water Conservation: An Econometric Model of Aggregate Demand under Nonlinear Budget Constraint," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt3gx868tg, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt3gx868tg
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/3gx868tg.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mary E. Renwick & Sandra O. Archibald, 1998. "Demand Side Management Policies for Residential Water Use: Who Bears the Conservation Burden?," Land Economics, University of Wisconsin Press, vol. 74(3), pages 343-359.
    2. J. E. Schefter & E. L. David, 1985. "Estimating Residential Water Demand under Multi-Part Tariffs Using Aggregate Data," Land Economics, University of Wisconsin Press, vol. 64(3), pages 272-280.
    3. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    4. Henry S. Foster, Jr. & Bruce R. Beattie, 1981. "On the Specification of Price in Studies of Consumer Demand under Block Price Scheduling," Land Economics, University of Wisconsin Press, vol. 57(4), pages 624-629.
    5. Fisher Anthony & Fullerton David & Hatch Nile & Reinelt Peter, 1995. "Alternatives for Managing Drought: A Comparative Cost Analysis," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 304-320, November.
    6. R. Bruce Billings & Donald E. Agthe, 1980. "Price Elasticities for Water: A Case of Increasing Block Rates," Land Economics, University of Wisconsin Press, vol. 56(1), pages 73-84.
    7. Moffitt, Robert, 1986. "The Econometrics of Piecewise-Linear Budget Constraints: A Survey and Exposition of the Maximum Likelihood Method," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(3), pages 317-328, July.
    8. Michael L. Nieswiadomy & David J. Molina, 1989. "Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates Using Household Data," Land Economics, University of Wisconsin Press, vol. 65(3), pages 280-289.
    9. John A. Nordin, 1976. "A Proposed Modification of Taylor's Demand Analysis: Comment," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 719-721, Autumn.
    10. Lester D. Taylor, 1975. "The Demand for Electricity: A Survey," Bell Journal of Economics, The RAND Corporation, vol. 6(1), pages 74-110, Spring.
    11. Joseph V. Terza & W. P. Welch, 1982. "Estimating Demand under Block Rates: Electricity and Water," Land Economics, University of Wisconsin Press, vol. 58(2), pages 181-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alawadhi, Ahmad & Burney, Nadeem A. & Gelan, Ayele & Al-Fulaij, Sheikha & Al-Musallam, Nadia & Awadh, Wafa, 2021. "The Effect of Conservation on Residential Fresh Water Consumption: Evidence from Kuwait," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 74(1), pages 47-82.
    2. Kertous, Mourad & Zerzour, Sahad, 2015. "To pay or not to pay? Water bill and delay in payment in Bejaia (Algeria): A duration analysis," MPRA Paper 67801, University Library of Munich, Germany.
    3. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corral, Leonardo & Fisher, Anthony C. & Hatch, Nile W., 1999. "Price and Non-Price Influences on Water Conservation: An Econometric Model of Aggregate Demand under Nonlinear Budget Constraint," CUDARE Working Papers 7155, University of California, Berkeley, Department of Agricultural and Resource Economics.
    2. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    3. Diakité, Daouda & Thomas, Alban, 2011. "La demande domestique d’eau potable : une étude sur un panel de communes ivoiriennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 87(3), pages 269-299, septembre.
    4. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    5. Corral, Leonardo & Fisher, Anthony C. & Hatch, Nile W., 1998. "Price And Non-Price Influences On Water Conservation: An Econometric Model Of Aggregate Demand Under Nonlinear Budget Constraint," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20958, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    7. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    8. Ming-Feng Hung & Bin-Tzong Chie, 2013. "Residential Water Use: Efficiency, Affordability, and Price Elasticity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 275-291, January.
    9. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    10. Dinusha Dharmaratna & Edwyna Harris, 2012. "Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2283-2299, June.
    11. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    12. Younes Ben Zaied & Mohamed Salah Matoussi, 2011. "Residential Water Demand: A Panel Cointegration Approach and Application to Tunisia," Working Papers 656, Economic Research Forum, revised 12 Jan 2011.
    13. Fernando Arbues & Inmaculada Villanua, 2006. "Potential for Pricing Policies in Water Resource Management: Estimation of Urban Residential Water Demand in Zaragoza, Spain," Urban Studies, Urban Studies Journal Limited, vol. 43(13), pages 2421-2442, December.
    14. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.
    15. Tchigriaeva, Elena & Lott, Corey & Kimberly, Rollins, 2014. "Modeling effects of multiple conservation policy instruments and exogenous factors on urban residential water demand through household heterogeneity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170605, Agricultural and Applied Economics Association.
    16. Dinusha Dharmaratna & Edwyna Harris, 2010. "Estimating Residential Water Demand using the Stone-Geary Functional Form: the Case of Sri Lanka," Monash Economics Working Papers 46-10, Monash University, Department of Economics.
    17. Stavins, Robert & Hanemann, W. Michael & Olmstead, Sheila, 2005. "Do Consumers React to the Shape of Supply? Water Demand under Heterogeneous Price Structures," RFF Working Paper Series dp-05-29, Resources for the Future.
    18. Tamkinat Rauf & M. Wasif Siddiqi, 2008. "Price-setting for Residential Water: Estimation of Water Demand in Lahore," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 893-906.
    19. Jiménez, Darío F. & Orrego, Sergio A. & Vásquez, Felipe A. & Ponce, Roberto D., 2016. "Estimación de la demanda de agua para uso residencial urbano usando un modelo discreto-continuo y datos desagregados a nivel de hogar: el caso de la ciudad de Manizales, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 153-178, December.
    20. Acuña, Guillermo, 2017. "Elasticidades de la demanda de agua en Chile [Elasticities of water demand in Chile]," MPRA Paper 82916, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt3gx868tg. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.