IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/122.html
   My bibliography  Save this paper

Asymptotics for posterior hazards

Author

Listed:
  • Pierpaolo De Blasi
  • Giovanni Peccati
  • Igor Prünster

Abstract

An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.

Suggested Citation

  • Pierpaolo De Blasi & Giovanni Peccati & Igor Prünster, 2009. "Asymptotics for posterior hazards," Carlo Alberto Notebooks 122, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:122
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.122.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Lijoi & Bernardo Nipoti, 2013. "A class of hazard rate mixtures for combining survival data from different experiments," DEM Working Papers Series 059, University of Pavia, Department of Economics and Management.
    2. Antonio Lijoi & Bernardo Nipoti, 2014. "A Class of Hazard Rate Mixtures for Combining Survival Data From Different Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 802-814, June.
    3. Stefano Favaro & Antonio Lijoi & Igor Prunster, 2011. "Asymptotics for a Bayesian nonparametric estimator of species richness," Quaderni di Dipartimento 144, University of Pavia, Department of Economics and Quantitative Methods.
    4. Ilenia Epifani & Antonio Lijoi, 2009. "Nonparametric Priors for Vectors of Survival Functions," Quaderni di Dipartimento 098, University of Pavia, Department of Economics and Quantitative Methods.
    5. Arbel, Julyan & Lijoi, Antonio & Nipoti, Bernardo, 2016. "Full Bayesian inference with hazard mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 359-372.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.