Sensitive Questions in Online Surveys: An Experimental Evaluation of the Randomized Response Technique and the Crosswise Model
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andreas Quatember, 2019. "A discussion of the two different aspects of privacy protection in indirect questioning designs," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 269-282, January.
- Korndörfer, Martin & Krumpal, Ivar & Schmukle, Stefan C., 2014. "Measuring and explaining tax evasion: Improving self-reports using the crosswise model," Journal of Economic Psychology, Elsevier, vol. 45(C), pages 18-32.
- Marc Höglinger & Ben Jann, 2018.
"More is not always better: An experimental individual-level validation of the randomized response technique and the crosswise model,"
PLOS ONE, Public Library of Science, vol. 13(8), pages 1-22, August.
- Marc Höglinger & Ben Jann, 2016. "More Is Not Always Better: An Experimental Individual-Level Validation of the Randomized Response Technique and the Crosswise Model," University of Bern Social Sciences Working Papers 18, University of Bern, Department of Social Sciences.
- John, Leslie K. & Loewenstein, George & Acquisti, Alessandro & Vosgerau, Joachim, 2018. "When and why randomized response techniques (fail to) elicit the truth," Organizational Behavior and Human Decision Processes, Elsevier, vol. 148(C), pages 101-123.
- Kundt, Thorben, 2014. "Applying “Benford’s law” to the Crosswise Model: Findings from an online survey on tax evasion," Working Paper 148/2014, Helmut Schmidt University, Hamburg.
- Kirchner Antje, 2015. "Validating Sensitive Questions: A Comparison of Survey and Register Data," Journal of Official Statistics, Sciendo, vol. 31(1), pages 31-59, March.
More about this item
Keywords
online survey; sensitive questions; plagiarism; exam cheating; randomized response technique; crosswise model;All these keywords.
JEL classification:
- C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
- C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CBE-2014-06-02 (Cognitive and Behavioural Economics)
- NEP-EXP-2014-06-02 (Experimental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bss:wpaper:9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ben Jann (email available below). General contact details of provider: https://www.sowi.unibe.ch/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.