IDEAS home Printed from https://ideas.repec.org/p/brk/wpaper/0907.html
   My bibliography  Save this paper

Accuracy of Deterministic Extended-Path Solution Methods for Dynamic Stochastic Optimization Problems in Macroeconomics

Author

Listed:
  • David R.F. Love

    (Department of Economics, Brock University)

Abstract

The deterministic extended-path method for solving dynamic stochastic optimization problems approximates conditional expectations instead of approximating a model's complex non-linear dynamics. We show that this straightforward approach provides similar accuracy to the best results reported for alternative methods, and gives uniform performance across the entire state space. Our implementation requires roughly 4 fold more computer time than Galerkin projection, but the method has offsetting simplicity and generality that make it an attractive choice.

Suggested Citation

  • David R.F. Love, 2009. "Accuracy of Deterministic Extended-Path Solution Methods for Dynamic Stochastic Optimization Problems in Macroeconomics," Working Papers 0907, Brock University, Department of Economics.
  • Handle: RePEc:brk:wpaper:0907
    as

    Download full text from publisher

    File URL: https://brocku.ca/repec/pdf/0907.pdf
    File Function: First version, Nov. 2008
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fair, Ray C & Taylor, John B, 1983. "Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 51(4), pages 1169-1185, July.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    3. Heer, Burkhard & Maußner, Alfred, 2008. "Computation Of Business Cycle Models: A Comparison Of Numerical Methods," Macroeconomic Dynamics, Cambridge University Press, vol. 12(5), pages 641-663, November.
    4. Gagnon, Joseph E, 1990. "Solving the Stochastic Growth Model by Deterministic Extended Path," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 35-36, January.
    5. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    6. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    7. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hal:spmain:info:hdl:2441/3ug0u3qte39q7rqvbmij9rb993 is not listed on IDEAS
    2. ADJEMIAN Stéphane & JUILLARD Michel, 2010. "Dealing with ZLB in DSGE models An application to the Japanese economy," ESRI Discussion paper series 258, Economic and Social Research Institute (ESRI).
    3. repec:spo:wpmain:info:hdl:2441/3ug0u3qte39q7rqvbmij9rb993 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David R.F. Love, 2010. "Revisiting deterministic extended-path: a simple and accurate solution method for macroeconomic models," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 1(3/4), pages 309-316.
    2. David R.F. Love, 2008. "A Note on the Accuracy of Extended-Path Solution Methods for Dynamic General Equilibrium Economies," Working Papers 0801, Brock University, Department of Economics, revised Apr 2008.
    3. S. Sirakaya & Stephen Turnovsky & M. Alemdar, 2006. "Feedback Approximation of the Stochastic Growth Model by Genetic Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 185-206, May.
    4. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    5. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    6. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    7. Paul Pichler, 2005. "Evaluating Approximate Equilibria of Dynamic Economic Models," Vienna Economics Papers 0510, University of Vienna, Department of Economics.
    8. Heer Burkhard & Maußner Alfred, 2011. "Value Function Iteration as a Solution Method for the Ramsey Model," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(4), pages 494-515, August.
    9. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    10. Dissou, Yazid & Karnizova, Lilia, 2016. "Emissions cap or emissions tax? A multi-sector business cycle analysis," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 169-188.
    11. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    12. Viktors Ajevskis, 2019. "Generalised Impulse Response Function as a Perturbation of a Global Solution to DSGE Models," Working Papers 2019/04, Latvijas Banka.
    13. Guerrieri, Luca & Iacoviello, Matteo, 2015. "OccBin: A toolkit for solving dynamic models with occasionally binding constraints easily," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 22-38.
    14. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    15. José Cao-Alvira, 2010. "Finite Elements in the Presence of Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 35(4), pages 355-370, April.
    16. Ajevskis, Viktors, 2019. "Nonlocal Solutions To Dynamic Equilibrium Models: The Approximate Stable Manifolds Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 23(6), pages 2544-2571, September.
    17. Francisco (F.) Blasques & Marc Nientker, 2019. "Transformed Perturbation Solutions for Dynamic Stochastic General Equilibrium Models," Tinbergen Institute Discussion Papers 19-012/III, Tinbergen Institute, revised 09 Feb 2020.
    18. Yongyang Cai & Kenneth L. Judd, 2023. "A simple but powerful simulated certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 14(2), pages 651-687, May.
    19. Kenneth Judd & Lilia Maliar & Serguei Maliar, 2009. "Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models," NBER Working Papers 15296, National Bureau of Economic Research, Inc.
    20. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.

    More about this item

    Keywords

    Dynamic stochastic equilibrium; computational methods; non-linear solutions;
    All these keywords.

    JEL classification:

    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:brk:wpaper:0907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jean-Francois Lamarche (email available below). General contact details of provider: https://edirc.repec.org/data/debroca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.