IDEAS home Printed from https://ideas.repec.org/p/bos/wpaper/wp2011-058.html
   My bibliography  Save this paper

Inference and Speci?cation Testing in DSGE Models with Possible Weak Identification

Author

Listed:
  • Zhongjun Qu

    (Department of Economics, Boston University)

Abstract

This paper considers inference and model diagnostics for log-linearized DSGE models allow- ing an unknown subset of parameters to be weakly (including un-) identified. The framework allows for latent state variables, measurement errors and also permits analysis using only part of the spectrum, say at the business cycle frequencies. The latter is important because DSGE mod- els are often designed to explain business cycle movements, not very long-run or very short-run ?uctuations. For inference, we first characterize weak identi?cation from a frequency domain perspective and propose a score test for the structural parameters based on the frequency domain maximum likelihood. The construction heavily exploits the structures of the DSGE solution, the score function and the information matrix. In particular, we show that the test statistic can be represented as the explained sum of squares from a complex-valued multivariate linear regression, where weak identification surfaces as (imperfectly) multicollinear regressors. Then, we prove that asymptotically valid inference can be carried out by inverting this test statistic and using Chi-square critical values. Next, we suggest procedures to construct uniform confidence bands for the impulse response function, the time path of the variance decomposition, the individual spectrum and the absolute coherency. For model diagnostics, we propose a family of frequency domain misspecification tests that are robust to weak identification. They can be used to test for misspecification in the mean, in the spectrum as well as misspecification within a band of frequencies. A simulation experiment using a calibrated model suggests that the tests have adequate size even in relatively small samples. It also suggests that it is possible to have informative confidence sets in DSGE models with unidentified parameters, particularly regard- ing the impulse responses functions. Although the paper focuses on DSGE models, the methods developed are potentially applicable to other dynamic models with well defined spectra, such as the stationary (factor-augmented) structural vector autoregression.

Suggested Citation

  • Zhongjun Qu, 2011. "Inference and Speci?cation Testing in DSGE Models with Possible Weak Identification," Boston University - Department of Economics - Working Papers Series WP2011-058, Boston University - Department of Economics.
  • Handle: RePEc:bos:wpaper:wp2011-058
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Francis X. Diebold & Lee E. Ohanian & Jeremy Berkowitz, 1998. "Dynamic Equilibrium Economies: A Framework for Comparing Models and Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 433-451.
    2. Watson, Mark W, 1993. "Measures of Fit for Calibrated Models," Journal of Political Economy, University of Chicago Press, vol. 101(6), pages 1011-1041, December.
    3. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    4. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    5. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    6. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    7. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    8. Christiano, Lawrence J & Eichenbaum, Martin & Marshall, David, 1991. "The Permanent Income Hypothesis Revisited," Econometrica, Econometric Society, vol. 59(2), pages 397-423, March.
    9. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    10. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    11. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    12. Pablo Guerrón-Quintana & Atsushi Inoue & Lutz Kilian, 2009. "Frequentist inference in weakly identified DSGE models," Working Papers 09-13, Federal Reserve Bank of Philadelphia.
    13. Thomas J. Sargent & Paolo Surico, 2011. "Two Illustrations of the Quantity Theory of Money: Breakdowns and Revivals," American Economic Review, American Economic Association, vol. 101(1), pages 109-128, February.
    14. Jean-Marie Dufour & Lynda Khalaf & Maral Kichian, 2009. "Structural Multi-Equation Macroeconomic Models: Identification-Robust Estimation and Fit," Staff Working Papers 09-19, Bank of Canada.
    15. Christiano, Lawrence J. & Vigfusson, Robert J., 2003. "Maximum likelihood in the frequency domain: the importance of time-to-plan," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 789-815, May.
    16. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    17. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    18. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    19. Altug, Sumru, 1989. "Time-to-Build and Aggregate Fluctuations: Some New Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(4), pages 889-920, November.
    20. Anderson, Gary & Moore, George, 1985. "A linear algebraic procedure for solving linear perfect foresight models," Economics Letters, Elsevier, vol. 17(3), pages 247-252.
    21. Engle, Robert F, 1974. "Band Spectrum Regression," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 1-11, February.
    22. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, October.
    23. Whiteman, Charles H, 1984. "Lucas on the Quantity Theory: Hypothesis Testing without Theory," American Economic Review, American Economic Association, vol. 74(4), pages 742-749, September.
    24. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    25. King, Robert G & Watson, Mark W, 1996. "Money, Prices, Interest Rates and the Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 35-53, February.
    26. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    27. David N. DeJong & Chetan Dave, 2007. "Introduction to Structural Macroeconometrics," Introductory Chapters, in: Structural Macroeconometrics, Princeton University Press.
    28. Zhongjun Qu & Denis Tkachenko, 2010. "Identification and Frequency Domain QML Estimation of Linearized DSGE Models," Boston University - Department of Economics - Working Papers Series WP2010-053, Boston University - Department of Economics.
    29. Kleibergen, Frank & Mavroeidis, Sophocles, 2009. "Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 293-311.
    30. Hansen, Lars Peter & Sargent, Thomas J., 1993. "Seasonality and approximation errors in rational expectations models," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 21-55.
    31. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    32. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    33. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    34. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    35. Frank Schorfheide & Francis X. Diebold & Marco Del Negro, 2008. "Priors from Frequency-Domain Dummy Observations," 2008 Meeting Papers 310, Society for Economic Dynamics.
    36. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    2. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(2), pages 287-333, April.
    3. Anna Mikusheva, 2014. "Estimation of dynamic stochastic general equilibrium models (in Russian)," Quantile, Quantile, issue 12, pages 1-21, February.
    4. Zhongjun Qu & Denis Tkachenko, 2010. "Identification and Frequency Domain QML Estimation of Linearized DSGE Models," Boston University - Department of Economics - Working Papers Series WP2010-053, Boston University - Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    2. Zhongjun Qu & Denis Tkachenko, 2010. "Identification and Frequency Domain QML Estimation of Linearized DSGE Models," Boston University - Department of Economics - Working Papers Series WP2010-053, Boston University - Department of Economics.
    3. Denis Tkachenko & Zhongjun Qu, 2012. "Frequency Domain Analysis of Medium Scale DSGE Models with Application to Smets and Wouters (2007)," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 319-385, Emerald Group Publishing Limited.
    4. Zhongjun Qu, 2018. "A Composite Likelihood Framework for Analyzing Singular DSGE Models," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 916-932, December.
    5. Komunjer, Ivana & Zhu, Yinchu, 2020. "Likelihood ratio testing in linear state space models: An application to dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 218(2), pages 561-586.
    6. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    7. Luca Sala, 2015. "Dsge Models in the Frequency Domains," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 219-240, March.
    8. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    9. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Tan, Fei, 2018. "A Frequency-Domain Approach to Dynamic Macroeconomic Models," MPRA Paper 90487, University Library of Munich, Germany.
    11. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    12. Paccagnini, Alessia, 2010. "DSGE Model Validation in a Bayesian Framework: an Assessment," MPRA Paper 24509, University Library of Munich, Germany.
    13. Nikolay Iskrev, 2010. "Evaluating the strength of identification in DSGE models. An a priori approach," 2010 Meeting Papers 1117, Society for Economic Dynamics.
    14. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2013. "Identification-robust analysis of DSGE and structural macroeconomic models," Journal of Monetary Economics, Elsevier, vol. 60(3), pages 340-350.
    15. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    16. Anna Mikusheva, 2014. "Estimation of dynamic stochastic general equilibrium models (in Russian)," Quantile, Quantile, issue 12, pages 1-21, February.
    17. Gorodnichenko, Yuriy & Ng, Serena, 2010. "Estimation of DSGE models when the data are persistent," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 325-340, April.
    18. Christiano, Lawrence J. & Vigfusson, Robert J., 2003. "Maximum likelihood in the frequency domain: the importance of time-to-plan," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 789-815, May.
    19. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    20. Jinho Choi & Juan Carlos Escanciano & Junjie Guo, 2022. "Generalized band spectrum estimation with an application to the New Keynesian Phillips curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1055-1078, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2011-058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Program Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/decbuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.