IDEAS home Printed from https://ideas.repec.org/p/bog/wpaper/318.html
   My bibliography  Save this paper

Superkurtosis

Author

Listed:
  • Stavros Degiannakis

    (Bank of Greece)

  • George Filis

    (University of Patras)

  • Grigorios Siourounis

    (Panteion University of Social and Political Science, and Brown University)

  • Lorenzo Trapani

    (University of Nottingham)

Abstract

Very little is known on how traditional risk metrics behave under intraday trading. We fill this void by examining the finiteness of the returns’ moments and assessing the impact of their infinity in a risk management framework. We show that when intraday trading is considered, assuming finite higher order moments, potential losses are materially larger than what the theory predicts, and they increase exponentially as the trading frequency increases - a phenomenon we call superkurtosis. Hence, the use of the current risk management techniques under intraday trading impose threats to the stability of financial markets, given that capital ratios may be severely underestimated.

Suggested Citation

  • Stavros Degiannakis & George Filis & Grigorios Siourounis & Lorenzo Trapani, 2023. "Superkurtosis," Working Papers 318, Bank of Greece.
  • Handle: RePEc:bog:wpaper:318
    as

    Download full text from publisher

    File URL: https://www.bankofgreece.gr/Publications/Paper2023318.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    • Degiannakis, Stavros & Filis, George & Siourounis, Grigorios & Trapani, Lorenzo, 2019. "Superkurtosis," MPRA Paper 96563, University Library of Munich, Germany.
    • Degiannakis, Stavros & Filis, George & Siourounis, Grigorios & Trapani, Lorenzo, 2019. "Superkurtosis," MPRA Paper 94473, University Library of Munich, Germany.

    References listed on IDEAS

    as
    1. Trapani, Lorenzo, 2016. "Testing for (in)finite moments," Journal of Econometrics, Elsevier, vol. 191(1), pages 57-68.
    2. Andrei A. Kirilenko & Andrew W. Lo, 2013. "Moore's Law versus Murphy's Law: Algorithmic Trading and Its Discontents," Journal of Economic Perspectives, American Economic Association, vol. 27(2), pages 51-72, Spring.
    3. Igor Fedotenkov, 2013. "A bootstrap method to test for the existence of finite moments," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 315-322, June.
    4. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    5. Beddington, John & Furse, Clara & Bond, Philip & Cliff, Dave & Goodhart, Charles & Houstoun, Kevin & Linton, Oliver & Zigrand, Jean-Pierre, 2012. "Foresight: the future of computer trading in financial markets: final project report," LSE Research Online Documents on Economics 62157, London School of Economics and Political Science, LSE Library.
    6. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    7. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    2. Angerer, Martin & Neugebauer, Tibor & Shachat, Jason, 2023. "Arbitrage bots in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 206(C), pages 262-278.
    3. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    4. Dewitte, Ruben, 2020. "From Heavy-Tailed Micro to Macro: on the characterization of firm-level heterogeneity and its aggregation properties," MPRA Paper 103170, University Library of Munich, Germany.
    5. Gianluca Piero Maria Virgilio, 2019. "High-frequency trading: a literature review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 183-208, June.
    6. Karolis Liaudinskas, 2022. "Human vs. Machine: Disposition Effect among Algorithmic and Human Day Traders," Working Paper 2022/6, Norges Bank.
    7. Bellia, Mario & Christensen, Kim & Kolokolov, Aleksey & Pelizzon, Loriana & Renò, Roberto, 2022. "Do designated market makers provide liquidity during a flash crash?," SAFE Working Paper Series 270, Leibniz Institute for Financial Research SAFE, revised 2022.
    8. Tamer Khraisha & Keren Arthur, 2018. "Can we have a general theory of financial innovation processes? A conceptual review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-27, December.
    9. Hassan Belkacem Ghassan & Abdelkrim Ahmed Guendouz, 2019. "Panel modeling of z-score: evidence from Islamic and conventional Saudi banks," International Journal of Islamic and Middle Eastern Finance and Management, Emerald Group Publishing Limited, vol. 12(3), pages 448-468, July.
    10. Christophe Boucher & Benjamin Hamidi & Patrick Kouontchou & Bertrand Maillet, 2012. "Une évaluation économique du risque de modèle pour les investisseurs de long terme," Revue économique, Presses de Sciences-Po, vol. 63(3), pages 591-600.
    11. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    12. Matthew Zook & Michael H Grote, 2017. "The microgeographies of global finance: High-frequency trading and the construction of information inequality," Environment and Planning A, , vol. 49(1), pages 121-140, January.
    13. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    14. Gao, Bin & Liu, Xihua, 2020. "Intraday sentiment and market returns," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 48-62.
    15. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
    16. Joseph, Andreas & Vasios, Michalis, 2022. "OTC Microstructure in a period of stress: A Multi-layered network approach," Journal of Banking & Finance, Elsevier, vol. 138(C).
    17. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    18. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    19. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    20. Lajos Horvath & Lorenzo Trapani, 2021. "Changepoint detection in random coefficient autoregressive models," Papers 2104.13440, arXiv.org.

    More about this item

    Keywords

    Nowcasting; forecasting; GDP; disaggregation; factors; multilayer; mixed frequency;
    All these keywords.

    JEL classification:

    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bog:wpaper:318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anastasios Rizos (email available below). General contact details of provider: https://edirc.repec.org/data/boggvgr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.