IDEAS home Printed from https://ideas.repec.org/p/boc/usug06/12.html
   My bibliography  Save this paper

Estimating and modeling the proportion cured of disease in population-based cancer studies

Author

Listed:
  • Paul C. Lambert

    (Centre for Biostatistics & Genetic Epidemiology, University of Leicester)

Abstract

In population-based cancer studies, cure is said to occur when the mortality (hazard) rate in the diseased group of individuals returns to the same level as that expected in the general population. The cure fraction (the proportion of patients cured of disease) is of interest to patients and a useful measure to monitor trends in survival of curable disease. I will describe two types of cure model, namely, the mixture and nonmixture cure model (Sposto 2002); explain how they can be extended to incorporate the expected mortality rate (obtained from routine data sources); and discuss their implementation in Stata using the strsmix and strsnmix commands. In both commands there is the choice of parametric distribution (Weibull, generalized gamma, and log–logistic) and link function for the cure fraction (identity, logit, and log(–log)). As well as modeling the cure fraction it is possible to include covariates for the ancillary parameters for the parametric distributions. This ability is important, as it allows for departures from proportional excess hazards (typical in many population-based cancer studies). Both commands incorporate delayed entry and can therefore be used to obtain up-to-date estimates of the cure fraction by using period analysis (Smith et al. 2004). There is also an associated predict command that allows prediction of the cure fraction, relative survival, and the excess mortality rate with associated confidence intervals. For some cancers the parametric distributions listed above do not fit the data well, and I will describe how finite mixture distributions can be used to overcome this limitation. I will use examples from international cancer registries to illustrate the approach.

Suggested Citation

  • Paul C. Lambert, 2006. "Estimating and modeling the proportion cured of disease in population-based cancer studies," United Kingdom Stata Users' Group Meetings 2006 12, Stata Users Group.
  • Handle: RePEc:boc:usug06:12
    as

    Download full text from publisher

    File URL: http://repec.org/usug2006/Stata2006PL.pdf
    File Function: presentation slides
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug06:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.