IDEAS home Printed from https://ideas.repec.org/p/boc/dsug11/05.html
   My bibliography  Save this paper

orderalpha: Nonparametric order-α efficiency analysis for Stata

Author

Listed:
  • Harald Tauchmann

    (RWI)

Abstract

Despite its frequent use in applied work, nonparametric approaches to efficiency analysis, namely data envelopment analysis (DEA) and free disposal hull (FDH), have bad reputations among econometricians. This is mainly due to DEA and FDH representing deterministic approaches that are highly sensitive to outliers and measurement errors. However, recently, so-called partial frontier approaches—namely order-m (Cazals, Florens, and Simar, 2002, Journal of Econometrics 106:1–25) and order-a (Aragon, Dauia, and Thomas-Agnan, 2005, Economic Theory 21: 358– 389)—have been developed; they generalize FDH by allowing for super- efficient observations to be located beyond the estimated production- possibility frontier. Although these methods are purely nonparametric too, sensitivity to outliers is substantially reduced by partial frontier approaches enveloping just a subsample of observations. I present the new Stata command orderalpha that implements order-a efficiency analysis in Stata. The command allows for several options, such as statistical inference based on subsampling bootstrap. In addition, I present the accompanying Stata command oaoutlier, which is an explorative tool that employs orderalpha for detecting potential outliers in data meant for subsequent efficiency analysis using DEA.

Suggested Citation

  • Harald Tauchmann, 2011. "orderalpha: Nonparametric order-α efficiency analysis for Stata," German Stata Users' Group Meetings 2011 05, Stata Users Group.
  • Handle: RePEc:boc:dsug11:05
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/repec/dsug2011/desug11_tauchmann.pdf
    Download Restriction: no

    File URL: http://fmwww.bc.edu/repec/dsug2011/desug11_tauchmann_orderalpha.zip
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Choonjoo Lee, 2010. "An Efficient Data Envelopment Analysis with Large Data Set in Stata," BOS10 Stata Conference 3, Stata Users Group.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    4. Yong-bae Ji & Choonjoo Lee, 2010. "Data envelopment analysis," Stata Journal, StataCorp LP, vol. 10(2), pages 267-280, June.
    5. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    6. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cuf:journl:y:2017:v:18:i:1:valles-gimenez is not listed on IDEAS
    2. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    3. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    4. Jaime Valles-Gimenez & Anabel Zarate-Marco, 2017. "Tax Effort of Local Governments and its Determinants: The Spanish Case," Annals of Economics and Finance, Society for AEF, vol. 18(2), pages 323-348, November.
    5. Krüger, Jens J., 2012. "A Monte Carlo study of old and new frontier methods for efficiency measurement," European Journal of Operational Research, Elsevier, vol. 222(1), pages 137-148.
    6. Galina Besstremyannaya, 2014. "The efficiency of labor matching and remuneration reforms: a panel data quantile regression approach with endogenous treatment variables," Working Papers w0206, New Economic School (NES).
    7. Harald Tauchmann, 2012. "Partial frontier efficiency analysis," Stata Journal, StataCorp LP, vol. 12(3), pages 461-478, September.
    8. Galina Besstremyannaya, 2015. "Heterogeneous effect of residency matching and prospective payment on labor returns and hospital scale economies," Discussion Papers 15-001, Stanford Institute for Economic Policy Research.
    9. Pillai N., Vijayamohanan & AM, Narayanan, 2019. "Energy Efficiency: A Sectoral Analysis for Kerala," MPRA Paper 101424, University Library of Munich, Germany.
    10. Galina Besstremyannaya, 2014. "The efficiency of labor matching and remuneration reforms: a panel data quantile regression approach with endogenous treatment variables," Working Papers w0206, Center for Economic and Financial Research (CEFIR).
    11. Besstremyannaya, Galina, 2017. "Heterogeneous effect of the global financial crisis and the Great East Japan Earthquake on costs of Japanese banks," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 66-89.
    12. Bao Hoang Nguyen & Valentin Zelenyuk, 2020. "Robust efficiency analysis of public hospitals in Queensland, Australia," CEPA Working Papers Series WP052020, School of Economics, University of Queensland, Australia.
    13. Marcel Clermont & Julia Schaefer, 2019. "Identification of Outliers in Data Envelopment Analysis," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(4), pages 475-496, October.
    14. Kourtesi, Sofia & De Witte, Kristof & Polymeros, Apostolos, 2016. "Technical Efficiency in the Agricultural Sector - Evidence from a Conditional Quantile-Based Approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(2), June.
    15. Jean-François Brun & Constantin Thierry Compaore, 2021. "Public Expenditures Efficiency On Education Distribution in Developing Countries," CERDI Working papers hal-03116615, HAL.
    16. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    17. Fabio Pammolli & Francesco Porcelli & Francesco Vidoli & Guido Borà, 2014. "La spesa sanitaria delle Regioni in Italia - Saniregio 3," Working Papers CERM 02-2014, Competitività, Regole, Mercati (CERM).
    18. Fabio Pammolli & Francesco Porcelli & Francesco Vidoli & Monica Auteri & Guido Borà, 2017. "La spesa sanitaria delle Regioni in Italia - Saniregio2017," Working Papers CERM 01-2017, Competitività, Regole, Mercati (CERM).
    19. Subal Kumbhakar & Efthymios Tsionas, 2008. "Scale and efficiency measurement using a semiparametric stochastic frontier model: evidence from the U.S. commercial banks," Empirical Economics, Springer, vol. 34(3), pages 585-602, June.
    20. Alessandra Cepparulo & Gilles Mourre, 2020. "How and How Much? The Growth-Friendliness of Public Spending through the Lens," European Economy - Discussion Papers 132, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    21. Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:dsug11:05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.