IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/235.html
   My bibliography  Save this paper

New Information Response Functions

Author

Listed:
  • Jardet, C.
  • Monfort, A.
  • Pegoraro, F.

Abstract

We propose a new methodology for the analysis of impulse response functions in VAR or VARMA models. More precisely, we build our results on the non ambiguous notion of innovation of a stochastic process and we consider the impact of any kind of new information at a given date $t$ on the future values of the process. This methodology allows to take into account qualitative or quantitative information, either on the innovation or on the future responses, as well as informations on filters. We show, among other results, that our approach encompasses several standard methodologies found in the literature, such as the orthogonalization of shocks (Sims (1980)), the "structural" identification of shocks (Blanchard and Quah (1989)), the "generalized" impulse responses (Pesaran and Shin (1998)) or the impulse vectors (Uhlig (2005)).

Suggested Citation

  • Jardet, C. & Monfort, A. & Pegoraro, F., 2009. "New Information Response Functions," Working papers 235, Banque de France.
  • Handle: RePEc:bfr:banfra:235
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/working-paper_235_2009.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jardet, Caroline & Monfort, Alain & Pegoraro, Fulvio, 2013. "No-arbitrage Near-Cointegrated VAR(p) term structure models, term premia and GDP growth," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 389-402.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    4. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    5. Robert J. Gordon, 1986. "The American Business Cycle: Continuity and Change," NBER Books, National Bureau of Economic Research, Inc, number gord86-1.
    6. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    7. repec:adr:anecst:y:2005:i:78:p:01 is not listed on IDEAS
    8. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    9. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    10. Christian Gourieroux & Joanna Jasiak, 1999. "Nonlinear Innovations and Impulse Response," Working Papers 99-44, Center for Research in Economics and Statistics.
    11. Olivier J. Blanchard & Mark W. Watson, 1986. "Are Business Cycles All Alike?," NBER Chapters, in: The American Business Cycle: Continuity and Change, pages 123-180, National Bureau of Economic Research, Inc.
    12. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
    13. Christian Gouriéroux & Joann Jasiak, 2005. "Nonlinear Innovations and Impulse Responses with Application to VaR Sensitivity," Annals of Economics and Statistics, GENES, issue 78, pages 1-31.
    14. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jardet, Caroline & Monfort, Alain & Pegoraro, Fulvio, 2013. "No-arbitrage Near-Cointegrated VAR(p) term structure models, term premia and GDP growth," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 389-402.
    2. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    3. Antonio M. Conti & Andrea Nobili & Federico M. Signoretti, 2018. "Bank capital constraints, lending supply and economic activity," Temi di discussione (Economic working papers) 1199, Bank of Italy, Economic Research and International Relations Area.
    4. Renne Jean-Paul, 2017. "A model of the euro-area yield curve with discrete policy rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(1), pages 99-116, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    2. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    3. Elyasiani, Elyas & Kocagil, Ahmet E. & Mansur, Iqbal, 2007. "Information transmission and spillover in currency markets: A generalized variance decomposition analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 47(2), pages 312-330, May.
    4. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    5. Soyoung Kim, 2007. "What is Learned from a Currency Crisis, Fear of Floating or Hollow Middle? Identifying Exchange Rate Policy in Recent Crisis Countries," Discussion Paper Series 0712, Institute of Economic Research, Korea University.
    6. Sterken, Elmer, 2003. "Monetary transmission, asset prices, and the business cycle indicator in Germany," CCSO Working Papers 200315, University of Groningen, CCSO Centre for Economic Research.
    7. Goto, Shingo, 2000. "The Fed's Effect on Excess Returns and Inflation is Much Bigger Than You Think," University of California at Los Angeles, Anderson Graduate School of Management qt04f1z5hb, Anderson Graduate School of Management, UCLA.
    8. Garratt, Anthony & Lee, Kevin C & Pesaran, M. Hashem & Shin, Yongcheol, 1998. "A Structural Cointegrating VAR Approach to Macroeconometric Modelling," Cambridge Working Papers in Economics 9823, Faculty of Economics, University of Cambridge.
    9. Skrobotov, Anton (Скроботов, Антон) & Turuntseva, Marina (Турунцева, Марина), 2015. "Theoretical Aspects of Modeling of the SVAR [Теоретические Аспекты Моделирования Svar]," Published Papers mak8, Russian Presidential Academy of National Economy and Public Administration.
    10. Jardet, Caroline & Monfort, Alain & Pegoraro, Fulvio, 2013. "No-arbitrage Near-Cointegrated VAR(p) term structure models, term premia and GDP growth," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 389-402.
    11. Dobromił Serwa & Piotr Wdowiński, 2017. "Modeling Macro-Financial Linkages: Combined Impulse Response Functions in SVAR Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(4), pages 323-357, December.
    12. Dmitry Kulikov & Aleksei Netsunajev, 2016. "Identifying Shocks in Structural VAR models via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2015-8, Bank of Estonia, revised 19 Feb 2016.
    13. Kenneth F. Wallis & Jan P. A. M. Jacobs, 2005. "Comparing SVARs and SEMs: two models of the UK economy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 209-228.
    14. Paul Lau, Sau-Him, 2000. "On the validity and identification of long-run restrictions for a cointegrated system," Economic Modelling, Elsevier, vol. 17(4), pages 485-496, December.
    15. Claus Brand & Nuno Cassola, 2004. "A money demand system for euro area M3," Applied Economics, Taylor & Francis Journals, vol. 36(8), pages 817-838.
    16. Guay, Alain, 2021. "Identification of structural vector autoregressions through higher unconditional moments," Journal of Econometrics, Elsevier, vol. 225(1), pages 27-46.
    17. Dees, Stéphane, 2016. "Credit, asset prices and business cycles at the global level," Economic Modelling, Elsevier, vol. 54(C), pages 139-152.
    18. Marek Rusnak & Tomas Havranek & Roman Horvath, 2013. "How to Solve the Price Puzzle? A Meta-Analysis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(1), pages 37-70, February.
    19. Liu, Donghui & Meng, Lingjie & Wang, Yudong, 2020. "Oil price shocks and Chinese economy revisited: New evidence from SVAR model with sign restrictions," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 20-32.
    20. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.

    More about this item

    Keywords

    Impulse response functions ; innovation ; new information.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.