IDEAS home Printed from https://ideas.repec.org/p/bep/hvdbio/1004.html
   My bibliography  Save this paper

On the Cox Model with Time-Varying Regression Coefficients

Author

Listed:
  • Lu Tian

    (Harvard School of Public Health)

  • David Zucker

    (Hebrew University)

  • L. J. Wei

    (Harvard School of Public Health)

Abstract

No abstract is available for this item.

Suggested Citation

  • Lu Tian & David Zucker & L. J. Wei, 2004. "On the Cox Model with Time-Varying Regression Coefficients," Harvard University Biostatistics Working Paper Series 1004, Berkeley Electronic Press.
  • Handle: RePEc:bep:hvdbio:1004
    Note: oai:bepress.com:harvardbiostat-1004
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1004&context=harvardbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zongwu Cai & Yanqing Sun, 2003. "Local Linear Estimation for Time‐Dependent Coefficients in Cox's Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 93-111, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyuan Cao & Mathew M. Churpek & Donglin Zeng & Jason P. Fine, 2015. "Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1187-1196, September.
    2. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    3. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    4. Kauermann, Goran & Khomski, Pavel, 2006. "Additive two-way hazards model with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1944-1956, December.
    5. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    6. Kauermann, Goran, 2005. "Penalized spline smoothing in multivariable survival models with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 169-186, April.
    7. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    8. Patrick Heagerty & Yingye Zheng, 2004. "Survival Model Predictive Accuracy and ROC Curves," UW Biostatistics Working Paper Series 1051, Berkeley Electronic Press.
    9. Xuan Wang & Qihua Wang & Xiao-Hua Zhou, 2015. "Partially varying coefficient single-index additive hazard models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 817-841, October.
    10. Huazhen Lin & Zhe Fei & Yi Li, 2016. "A Semiparametrically Efficient Estimator of the Time-Varying Effects for Survival Data with Time-Dependent Treatment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 649-663, September.
    11. Anderl, Eva & Schumann, Jan Hendrik & Kunz, Werner, 2016. "Helping Firms Reduce Complexity in Multichannel Online Data: A New Taxonomy-Based Approach for Customer Journeys," Journal of Retailing, Elsevier, vol. 92(2), pages 185-203.
    12. Yanqing Sun & Seunggeun Hyun & Peter Gilbert, 2008. "Testing and Estimation of Time-Varying Cause-Specific Hazard Ratios with Covariate Adjustment," Biometrics, The International Biometric Society, vol. 64(4), pages 1070-1079, December.
    13. P. Saha & P. J. Heagerty, 2010. "Time-Dependent Predictive Accuracy in the Presence of Competing Risks," Biometrics, The International Biometric Society, vol. 66(4), pages 999-1011, December.
    14. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    15. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    16. Honda, Toshio & Yabe, Ryota, 2017. "Variable selection and structure identification for varying coefficient Cox models," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 103-122.
    17. C. Jason Liang & Patrick J. Heagerty, 2017. "A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 725-734, September.
    18. Bhattacharjee, Arnab, 2004. "Estimation in hazard regression models under ordered departures from proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 517-536, October.
    19. Guoqing Diao & Anand N. Vidyashankar & Sarah Zohar & Sandrine Katsahian, 2021. "Competing Risks Model with Short-Term and Long-Term Covariate Effects for Cancer Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 142-159, April.
    20. Yingye Zheng & Patrick J. Heagerty, 2005. "Partly Conditional Survival Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 61(2), pages 379-391, June.

    More about this item

    Keywords

    Confidence band; Kernel estimations; Martingale; Model checking and selection; Partial likelihood; Prediction; Survival analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:hvdbio:1004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.