IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/1284.html
   My bibliography  Save this paper

Measuring the Unmeasurable: Unraveling the complexities of real-time output gap estimation

Author

Listed:
  • Karen L. Pulido-Mahecha
  • Sergio Restrepo-Ángel
  • Franky Juliano Galeano-Ramírez

Abstract

This paper evaluates seven output gap models for real-time estimates, based on three criteria: stability of estimations on new observations, data revisions and/or methodological changes; inflation forecasting accuracy; and potential output response to structural economic shocks. Results confirm no single model outperforms across all criteria. Structural VARs exhibit superior inflation forecasts but show high instability, while semi-structural models produce more theoretically consistent potential output responses. To overcome this trade-off, we propose a novel clustering approach to pool models based on their real-time performance, yielding improved estimates. Our findings highlight the value of this method for enhancing real-time output gap measurement and informing monetary policy decisions. **** RESUMEN: Este artículo evalúa siete modelos de brecha de producto para estimaciones en tiempo-real, con base en tres criterios: estabilidad de las estimaciones ante nuevas observaciones, revisiones de datos y/o cambios metodológicos; precisión en el pronóstico de inflación y la respuesta del producto potencial ante choques económicos estructurales. Los resultados confirman que ningún modelo lidera en todos los criterios. Los VAR estructurales exhiben los mejores pronósticos de inflación, pero muestran una alta inestabilidad, mientras que los modelos semiestructurales producen respuestas de producto potencial teóricamente más consistentes. Para superar este trade-off, proponemos un nuevo enfoque de agrupación para construir conjuntos de modelos en función de su rendimiento en tiempo-real con el fin de obtener mejores estimaciones. Nuestros hallazgos resaltan el valor de este método para mejorar la medición de la brecha del producto en tiempo real e informar mejor las decisiones de política monetaria.

Suggested Citation

  • Karen L. Pulido-Mahecha & Sergio Restrepo-Ángel & Franky Juliano Galeano-Ramírez, 2024. "Measuring the Unmeasurable: Unraveling the complexities of real-time output gap estimation," Borradores de Economia 1284, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:1284
    DOI: 10.32468/be.1284
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.1284
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.1284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Valerie Cerra & Antonio Fatás & Sweta C. Saxena, 2023. "Hysteresis and Business Cycles," Journal of Economic Literature, American Economic Association, vol. 61(1), pages 181-225, March.
    2. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    3. Olivier Coibion & Yuriy Gorodnichenko & Mauricio Ulate, 2017. "Secular Stagnation: Policy Options and the Cyclical Sensitivity in Estimates of Potential Output," Working Papers 01/2017, National Bank of Ukraine.
    4. Rochelle M. Edge & Jeremy B. Rudd, 2016. "Real-Time Properties of the Federal Reserve's Output Gap," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 785-791, October.
    5. Camba-Mendez, Gonzalo & Rodriguez-Palenzuela, Diego, 2003. "Assessment criteria for output gap estimates," Economic Modelling, Elsevier, vol. 20(3), pages 529-562, May.
    6. Rafael Cusinato & André Minella & Sabino Silva Pôrto Júnior, 2013. "Output gap in Brazil: a real-time data analysis," Empirical Economics, Springer, vol. 44(3), pages 1113-1127, June.
    7. Olivier Coibion & Yuriy Gorodnichenko & Mauricio Ulate, 2018. "The Cyclical Sensitivity in Estimates of Potential Output," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 49(2 (Fall)), pages 343-441.
    8. Marcela De Castro-Valderrama & Santiago Forero-Alvarado & Nicolás Moreno-Arias & Sara Naranjo-Saldarriaga, 2021. "Unraveling the Exogenous Forces Behind Analysts’ Macroeconomic Forecasts," Borradores de Economia 1184, Banco de la Republica de Colombia.
    9. Nathan S. Balke & Stephen P.A. Brown & Mine K. Yucel, 2002. "Oil Price Shocks and the U.S. Economy: Where Does the Asymmetry Originate?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 27-52.
    10. Cohen, Daniel & Leker, Laura, 2014. "Health and Education: Another Look with the Proper Data," CEPR Discussion Papers 9940, C.E.P.R. Discussion Papers.
    11. Amador-Torres, J. Sebastián, 2017. "Finance-neutral potential output: An evaluation in an emerging market monetary policy context," Economic Systems, Elsevier, vol. 41(3), pages 389-407.
    12. Burlon, Lorenzo & D’Imperio, Paolo, 2020. "Reliable real-time estimates of the euro-area output gap," Journal of Macroeconomics, Elsevier, vol. 64(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mr. Alvar Kangur & Koralai Kirabaeva & Jean-Marc Natal & Simon Voigts, 2019. "How Informative Are Real Time Output Gap Estimates in Europe?," IMF Working Papers 2019/200, International Monetary Fund.
    2. Croushore, Dean & van Norden, Simon, 2019. "Fiscal Surprises at the FOMC," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1583-1595.
    3. Chalmovianský, Jakub & Němec, Daniel, 2022. "Assessing uncertainty of output gap estimates: Evidence from Visegrad countries," Economic Modelling, Elsevier, vol. 116(C).
    4. Mabrouk Chetouane & Matthieu Lemoine & Marie-Elisabeth de La Serve, 2011. "Impact de la crise sur la croissance potentielle," Post-Print hal-03389354, HAL.
    5. Francesco Furlanetto & Antoine Lepetit & Ørjan Robstad & Juan Rubio-Ramírez & Pål Ulvedal, 2025. "Estimating Hysteresis Effects," American Economic Journal: Macroeconomics, American Economic Association, vol. 17(1), pages 35-70, January.
    6. Omar Licandro & Francesca Vinci, 2021. "Potential output, the Taylor Rule and the Fed," Discussion Papers 2021/03, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    7. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    8. Giovanna Ciaffi & Matteo Deleidi & Mariana Mazzucato, 2024. "Measuring the macroeconomic responses to public investment in innovation: evidence from OECD countries," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 33(2), pages 363-382.
    9. Saroj Bhattarai & Felipe Schwartzman & Choongryul Yang, 2019. "The Persistent Employment Effects of the 2006-09 U.S. Housing Wealth Collapse," Working Paper 19-7, Federal Reserve Bank of Richmond.
    10. Lemoine, M. & de la Serve, M.E. & Chetouane, M., 2011. "Impact of the crisis on potential growth: An approach based on unobserved component models (in french)," Working papers 331, Banque de France.
    11. Schmöller, Michaela & Spitzer, Martin, 2019. "Endogenous TFP, business cycle persistence and the productivity slowdown," Research Discussion Papers 21/2019, Bank of Finland.
    12. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    13. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    14. Granados, Camilo & Parra-Amado, Daniel, 2024. "Estimating the output gap after COVID: How to address unprecedented macroeconomic variations," Economic Modelling, Elsevier, vol. 135(C).
    15. Schmöller, Michaela & Spitzer, Martin, 2019. "Endogenous TFP, business cycle persistence and the productivity slowdown," Bank of Finland Research Discussion Papers 21/2019, Bank of Finland.
    16. Francesca Vinci & Omar Licandro, 2020. "Switching-track after the Great Recession," Discussion Papers 2020/02, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    17. Francesco Furlanetto & Kåre Hagelund & Frank Hansen & Ørjan Robstad, 2020. "Norges Bank Output Gap Estimates: Forecasting Properties, Reliability and Cyclical Sensitivity," Working Paper 2020/7, Norges Bank.
    18. Jing Lian Suah, 2024. "The "plucking" model of the unemployment rate floor: Corss-country estimates and empirics," BIS Working Papers 1159, Bank for International Settlements.
    19. Francesco Simone Lucidi, 2023. "The misalignment of fiscal multipliers in Italian regions," Regional Studies, Taylor & Francis Journals, vol. 57(10), pages 2073-2086, October.
    20. Antonio Fatás, 2019. "Fiscal Policy, Potential Output, and the Shifting Goalposts," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 67(3), pages 684-702, September.

    More about this item

    Keywords

    output gaps; real-time estimation; business cycles; brecha del producto; estimación en tiempo real; ciclos reales;
    All these keywords.

    JEL classification:

    • J61 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Geographic Labor Mobility; Immigrant Workers
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:1284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.