IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_872_12.html
   My bibliography  Save this paper

Selecting predictors by using Bayesian model averaging in bridge models

Author

Listed:
  • Lorenzo Bencivelli

    (Bank of Italy)

  • Massimiliano Marcellino

    (European University Institute, Bocconi University and CEPR)

  • Gianluca Moretti

    (UBS Global asset management)

Abstract

This paper proposes the use of Bayesian model averaging (BMA) as a tool to select the predictors' set for bridge models. BMA is a computationally feasible method that allows us to explore the model space even in the presence of a large set of candidate predictors. We test the performance of BMA in now-casting by means of a recursive experiment for the euro area and the three largest countries. This method allows flexibility in selecting the information set month by month. We find that BMA based bridge models produce smaller forecast error than fixed composition bridges. In an application to the euro area they perform at least as well as medium-scale factor models.

Suggested Citation

  • Lorenzo Bencivelli & Massimiliano Marcellino & Gianluca Moretti, 2012. "Selecting predictors by using Bayesian model averaging in bridge models," Temi di discussione (Economic working papers) 872, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_872_12
    as

    Download full text from publisher

    File URL: http://www.bancaditalia.it/pubblicazioni/temi-discussione/2012/2012-0872/en_tema_872.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
    2. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    3. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    4. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    5. Guido Bulligan & Fabio Busetti & Michele Caivano & Pietro Cova & Davide Fantino & Alberto Locarno & Lisa Rodano, 2017. "The Bank of Italy econometric model: an update of the main equations and model elasticities," Temi di discussione (Economic working papers) 1130, Bank of Italy, Economic Research and International Relations Area.
    6. David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
    7. C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.
    8. Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).

    More about this item

    Keywords

    business cycle analysis; forecasting; Bayesian model averaging; bridge models.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_872_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.