IDEAS home Printed from https://ideas.repec.org/p/bay/rdwiwi/706.html
   My bibliography  Save this paper

Reducing Asset Weights' Volatility by Importance Sampling in Stochastic Credit Portfolio Optimization

Author

Listed:
  • Tilke, Stephan

Abstract

The objective of this paper is to study the effect of importance sampling (IS) techniques on stochastic credit portfolio optimization methods. I introduce a framework that leads to a reduction of volatility of resulting optimal portfolio asset weights. Performance of the method is documented in terms of implementation simplicity and accuracy. It is shown that the incorporated methods make solutions more precise given a limited computer performance by means of a reduced size of the initially necessary optimization model. For a presented example variance reduction of risk measures and asset weights by a factor of at least 350 was achieved. I finally outline how results can be mapped into business practice by utilizing readily available software such as RiskMetrics� CreditManager as basis for constructing a portfolio optimization model that is enhanced by means of IS. Dieser Beitrag soll die Auswirkung der Anwendung von Importance Sampling (IS) Techniken in der stochastischen Kreditportfoliooptimierung aufzeigen. Es wird ein Modellaufbau vorgestellt, der zu einer deutlichen Reduktion der Volatilität der Wertpapieranteilsgewichte führt. Durch eine Darstellung der verhältnismäßig einfachen Berücksichtigung der Importance Sampling Technik im Optimierungsverfahren sowie durch ein empirisches Beispiel wird die Leistungsfähigkeit der Methode dargelegt. In diesem Anwendungsbeispiel kann die Varianz der Schätzer sowohl für die Risikomaße als auch für die optimalen Anteilsgewichte um einen Faktor von mindestens 350 reduziert werden. Es wird somit gezeigt, dass die hier vorgestellte Methode durch eine Reduktion der Größe des ursprünglich notwendigen Optimierungs-problems die Genauigkeit von optimalen Lösungen erhöht, wenn nur eine begrenzte Rechnerleistung zur Verfügung steht. Abschließend wird dargelegt, wie die Lösungsansätze in der Praxis durch eine Ankopplung an existierende Softwarelösungen im Bankbetrieb umgesetzt werden können. Hierzu wird ein Vorgehen skizziert, das auf den Ergebnissen des Programms CreditManager von RiskMetrics ein Portfoliooptimierungsmodell aufbaut. Dieses wird um eine Importance Sampling Technik erweitert.

Suggested Citation

  • Tilke, Stephan, 2006. "Reducing Asset Weights' Volatility by Importance Sampling in Stochastic Credit Portfolio Optimization," University of Regensburg Working Papers in Business, Economics and Management Information Systems 417, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:706
    as

    Download full text from publisher

    File URL: https://epub.uni-regensburg.de/4533/1/paper_IS_3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    3. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iscoe, Ian & Kreinin, Alexander & Mausser, Helmut & Romanko, Oleksandr, 2012. "Portfolio credit-risk optimization," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1604-1615.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    2. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    3. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    4. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    5. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    6. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    7. Dirk Tasche, 2015. "Fitting a distribution to Value-at-Risk and Expected Shortfall, with an application to covered bonds," Papers 1505.07484, arXiv.org, revised Nov 2015.
    8. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    9. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    10. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    11. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    12. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    13. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    14. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    15. Wolfgang Kürsten & Mario Brandtner, 2009. "Kohärente Risikomessung versus individuelle Akzeptanzmengen — Anmerkungen zum impliziten Risikoverständnis des “Conditional Value-at-Risk”," Schmalenbach Journal of Business Research, Springer, vol. 61(4), pages 358-381, June.
    16. Wang, Ching-Ping & Huang, Hung-Hsi, 2016. "Optimal insurance contract under VaR and CVaR constraints," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 110-127.
    17. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    18. Ben Ameur, H. & Prigent, J.-L., 2018. "Risk management of time varying floors for dynamic portfolio insurance," European Journal of Operational Research, Elsevier, vol. 269(1), pages 363-381.
    19. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    20. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.

    More about this item

    Keywords

    Kreditrisiko ; Stochastische Optimierung; Varianzreduktion ; CVaR; CVaR ; credit risk ; stochastic portfolio optimization ; importance sampling ; CreditMetrics ; CreditManager;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gernot Deinzer (email available below). General contact details of provider: https://edirc.repec.org/data/wfregde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.