IDEAS home Printed from https://ideas.repec.org/p/bay/rdwiwi/582.html
   My bibliography  Save this paper

Auswirkungen unterschiedlicher Assetkorrelationen in Mehr-Sektoren-Kreditportfoliomodellen

Author

Listed:
  • Hamerle, Alfred
  • Knapp, Michael
  • Wildenauer, Nicole

Abstract

Im vorliegenden Beitrag wird untersucht, wie die Assetkorrelation zwischen zwei Sektoren auf einfache Weise berechnet werden kann und wie sich unterschiedliche Korrelationsannahmen auf die Form und Risikomaße von Verlustverteilungen auswirken. Dazu werden Ausfallzeitreihen von zwei us-amerikanischen Sektoren untersucht. Zum einen wird das Segment Industrieunternehmen und zum anderen das Retailsegment Kreditkarten betrachtet. Es wird gezeigt, wie unter Verwendung eines dynamischen Modells die Schuldnerbonität bzw. die Ausfallwahrscheinlichkeit unter Einbeziehung schuldnerspezifischer und makroökonomischer Faktoren geschätzt werden kann. Es stellt sich heraus, dass durch die Einbeziehung vor allem makroökonomischer Größen die Ausfallwahrscheinlichkeit Point in Time prognostiziert und sowohl die Assetkorrelation innerhalb eines Sektors bzw. Risikosegments als auch die intersektorale Korrelation verringert werden können. Dies führt im Allgemeinen zu präziseren Prognosen der Verlustverteilungen. In this paper we focus on the analysis of the effect of the asset correlation between two segments, its basic calculation and its impacts on the risk measures of loss distributions. For an empirical study we examine default histories of two American segments. One is the sector industry and the other is the (retail) segment credit cards. We show how the borrowers creditworthiness and the probability of default can be estimated using issuer-specific and macroeconomic variables in a dynamic approach. Using macroeconomic variables the probability of default can be predicted point in time. The asset correlation within a sector as well as the asset correlation between sectors can be reduced leading to a more precise prediction of loss distributions.

Suggested Citation

  • Hamerle, Alfred & Knapp, Michael & Wildenauer, Nicole, 2005. "Auswirkungen unterschiedlicher Assetkorrelationen in Mehr-Sektoren-Kreditportfoliomodellen," University of Regensburg Working Papers in Business, Economics and Management Information Systems 409, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:582
    as

    Download full text from publisher

    File URL: https://epub.uni-regensburg.de/4523/1/Auswirkungen.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1977. "On the pricing of contingent claims and the Modigliani-Miller theorem," Journal of Financial Economics, Elsevier, vol. 5(2), pages 241-249, November.
    2. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    5. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Daniel Rösch & Harald Scheule, 2004. "Forecasting Retail Portfolio Credit Risk," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 5(2), pages 16-32, February.
    8. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    9. Hamerle, Alfred & Liebig, Thilo & Scheule, Harald, 2004. "Forecasting Credit Portfolio Risk," Discussion Paper Series 2: Banking and Financial Studies 2004,01, Deutsche Bundesbank.
    10. Rösch, Daniel, 2003. "Correlations and Business Cycles of Credit Risk: Evidence from Bankruptcies in Germany," University of Regensburg Working Papers in Business, Economics and Management Information Systems 380, University of Regensburg, Department of Economics.
    11. repec:uts:ppaper:2004:1 is not listed on IDEAS
    12. Hamerle, Alfred & Liebig, Thilo & Rösch, Daniel, 2003. "Credit Risk Factor Modeling and the Basel II IRB Approach," Discussion Paper Series 2: Banking and Financial Studies 2003,02, Deutsche Bundesbank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamerle, Alfred & Liebig, Thilo & Rösch, Daniel, 2003. "Credit Risk Factor Modeling and the Basel II IRB Approach," Discussion Paper Series 2: Banking and Financial Studies 2003,02, Deutsche Bundesbank.
    2. Gürtler, Marc & Heithecker, Dirk, 2005. "Multi-period defaults and maturity effects on economic capital in a ratings-based default-mode model," Working Papers FW19V2, Technische Universität Braunschweig, Institute of Finance.
    3. Jonathan Crook & Tony Bellotti, 2010. "Time varying and dynamic models for default risk in consumer loans," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 283-305, April.
    4. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    5. Jobst, Norbert J. & Zenios, Stavros A., 2005. "On the simulation of portfolios of interest rate and credit risk sensitive securities," European Journal of Operational Research, Elsevier, vol. 161(2), pages 298-324, March.
    6. Daniel Rösch & Harald Scheule, 2014. "Forecasting Mortgage Securitization Risk Under Systematic Risk and Parameter Uncertainty," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(3), pages 563-586, September.
    7. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    8. Nystrom, Kaj & Skoglund, Jimmy, 2006. "A credit risk model for large dimensional portfolios with application to economic capital," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2163-2197, August.
    9. International Association of Deposit Insurers, 2011. "Evaluation of Deposit Insurance Fund Sufficiency on the Basis of Risk Analysis," IADI Research Papers 11-11, International Association of Deposit Insurers.
    10. Bhanu Pratap Singh Thakur & M. Kannadhasan & Vinay Goyal, 2018. "Determinants of corporate credit spread: evidence from India," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 45(1), pages 59-73, March.
    11. Racheva-Sarabian, Anna & Ryvkin, Dmitry & Semykina, Anastasia, 2015. "The default of special district financing: Evidence from California," Journal of Housing Economics, Elsevier, vol. 27(C), pages 37-48.
    12. Stephen Zamore & Kwame Ohene Djan & Ilan Alon & Bersant Hobdari, 2018. "Credit Risk Research: Review and Agenda," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(4), pages 811-835, March.
    13. Palombini, Edgardo, 2009. "Factor models and the credit risk of a loan portfolio," MPRA Paper 20107, University Library of Munich, Germany.
    14. Alain Monfort & Jean-Paul Renne, 2013. "Default, Liquidity, and Crises: an Econometric Framework," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 221-262, March.
    15. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    16. Greta Falavigna, 2006. "Models for Default Risk Analysis: Focus on Artificial Neural Networks, Model Comparisons, Hybrid Frameworks," CERIS Working Paper 200610, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    17. Augustin, Patrick & Subrahmanyam, Marti G. & Tang, Dragon Yongjun & Wang, Sarah Qian, 2014. "Credit Default Swaps: A Survey," Foundations and Trends(R) in Finance, now publishers, vol. 9(1-2), pages 1-196, December.
    18. Chava, Sudheer & Jarrow, Robert, 2008. "Modeling loan commitments," Finance Research Letters, Elsevier, vol. 5(1), pages 11-20, March.
    19. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    20. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.

    More about this item

    Keywords

    Ausfallwahrscheinlichkeit ; Kreditrisiko; Probability of Default ; PD ; Assetkorrelation ; Ausfallkorrelation ; Kreditrisikomanagement; Probability of Default ; asset correlation ; default correlation ; credit risk ; credit risk management;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gernot Deinzer (email available below). General contact details of provider: https://edirc.repec.org/data/wfregde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.