IDEAS home Printed from https://ideas.repec.org/p/bar/bedcje/200280.html
   My bibliography  Save this paper

Linear least squares estimation of the first order moving average parameter

Author

Listed:
  • Emili Valdero Mora

    (Universitat de Barcelona)

Abstract

We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the rst order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed.

Suggested Citation

  • Emili Valdero Mora, 2002. "Linear least squares estimation of the first order moving average parameter," Working Papers in Economics 80, Universitat de Barcelona. Espai de Recerca en Economia.
  • Handle: RePEc:bar:bedcje:200280
    as

    Download full text from publisher

    File URL: http://www.ere.ub.es/dtreball/E0280.rdf/at_download/file
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davidson, James E. H., 1981. "Problems with the estimation of moving average processes," Journal of Econometrics, Elsevier, vol. 16(3), pages 295-310, August.
    2. Nelson, Charles R., 1974. "The first-order moving average process : Identification, estimation and prediction," Journal of Econometrics, Elsevier, vol. 2(2), pages 121-141, July.
    3. Sargan, J D & Bhargava, Alok, 1983. "Maximum Likelihood Estimation of Regression Models with First Order Moving Average Errors When the Root Lies on the Unit Circle," Econometrica, Econometric Society, vol. 51(3), pages 799-820, May.
    4. Dent, Warren & Min, An-Sik, 1978. "A Monte Carlo study of autoregressive integrated moving average processes," Journal of Econometrics, Elsevier, vol. 7(1), pages 23-55, February.
    5. T. W. Anderson & Akimichi Takemura, 1986. "Why Do Noninvertible Estimated Moving Averages Occur?," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(4), pages 235-254, July.
    6. Ansley, Craig F. & Newbold, Paul, 1980. "Finite sample properties of estimators for autoregressive moving average models," Journal of Econometrics, Elsevier, vol. 13(2), pages 159-183, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vougas, Dimitrios V., 2008. "New exact ML estimation and inference for a Gaussian MA(1) process," Economics Letters, Elsevier, vol. 99(1), pages 172-176, April.
    2. Kim, Chang-Jin & Kim, Jaeho, 2013. "The `Pile-up Problem' in Trend-Cycle Decomposition of Real GDP: Classical and Bayesian Perspectives," MPRA Paper 51118, University Library of Munich, Germany.
    3. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 857-880.
    4. Yabe, Ryota, 2017. "Asymptotic distribution of the conditional-sum-of-squares estimator under moderate deviation from a unit root in MA(1)," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 220-226.
    5. Arslanturk, Yalcin & Balcilar, Mehmet & Ozdemir, Zeynel Abidin, 2011. "Time-varying linkages between tourism receipts and economic growth in a small open economy," Economic Modelling, Elsevier, vol. 28(1), pages 664-671.
    6. Krishnan, R. & Sen, Kunal, 1995. "Measuring persistence in industrial output: The Indian case," Journal of Development Economics, Elsevier, vol. 48(1), pages 25-41, October.
    7. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    8. Michael A. Hauser, 1998. "Maximum Likelihood Estimators for ARMA and ARFIMA Models: A Monte Carlo Study," Econometrics 9809001, University Library of Munich, Germany.
    9. YABE, Ryota & 矢部, 竜太, 2014. "Asymptotic Distribution of the Conditional Sum of Squares Estimator Under Moderate Deviation From a Unit Root in MA(1)," Discussion Papers 2014-19, Graduate School of Economics, Hitotsubashi University.
    10. Stephen R. Blough, 1994. "Near common factors and confidence regions for present value models," Working Papers 94-3, Federal Reserve Bank of Boston.
    11. Tatsuma Wada & Pierre Perron, 2005. "Trend and Cycles: A New Approach and Explanations of Some Old Puzzles," Computing in Economics and Finance 2005 252, Society for Computational Economics.
    12. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    13. Monti, Anna Clara, 1996. "A new preliminary estimator for MA(1) models," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 1-15, January.
    14. David Hamilton & Ka Ho Wu, 1995. "Confidence Regions For Parameters In The Ar(1) Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(3), pages 249-265, May.
    15. Pollock, D.S.G., 1991. "On the criterion function for arma estimation," Serie Research Memoranda 0074, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    16. André Klein & Guy Melard & Toufik Zahaf, 1998. "Computation of the exact information matrix of Gaussian dynamic regression time series models," ULB Institutional Repository 2013/13738, ULB -- Universite Libre de Bruxelles.
    17. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022. "Globalization, long memory, and real interest rate convergence: a historical perspective," Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
    18. Petros Dellaportas & Aleksandar Mijatovi'c, 2014. "Arbitrage-free prediction of the implied volatility smile," Papers 1407.5528, arXiv.org.
    19. Schnitkey, Gary D. & Taylor, C. Robert & Barry, Peter J., 1989. "Evaluating Farmland Investments Considering Dynamic Stochastic Returns And Farmland Prices," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 14(1), pages 1-14, July.
    20. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bar:bedcje:200280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Espai de Recerca en Economia (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.