IDEAS home Printed from https://ideas.repec.org/p/awi/wpaper/0739.html
   My bibliography  Save this paper

Long-Term Volatility Shapes the Stock Market’s Sensitivity to News

Author

Listed:
  • Conrad, Christian
  • Schoelkopf, Julius Theodor
  • Tushteva, Nikoleta

Abstract

We show that the S&P 500’s instantaneous response to surprises in U.S. macroeconomic announcements depends on the level of long-term stock market volatility. When long-term volatility is high, stock returns are more sensitive to news, and there is a pronounced asymmetry in the response to good and bad news. We explain this by combining the Campbell-Shiller log-linear present value framework with a two-component volatility model for the conditional variance of cash flow news and allowing for volatility feedback. In our model, innovations to the long-term volatility component are the most important driver of discount rate news. Large announcement surprises lead to upward revisions in future required returns, which dampens/amplifies the effect of good/bad news.

Suggested Citation

  • Conrad, Christian & Schoelkopf, Julius Theodor & Tushteva, Nikoleta, 2023. "Long-Term Volatility Shapes the Stock Market’s Sensitivity to News," Working Papers 0739, University of Heidelberg, Department of Economics.
  • Handle: RePEc:awi:wpaper:0739
    Note: This paper is part of http://archiv.ub.uni-heidelberg.de/volltextserver/view/schriftenreihen/sr-3.html
    as

    Download full text from publisher

    File URL: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bsz:16-heidok-341022
    File Function: Frontdoor page on HeiDOK
    Download Restriction: no

    File URL: https://archiv.ub.uni-heidelberg.de/volltextserver/34102/7/Conrad_Schoelkopf_Tushteva_dp739_2023.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Campbell, Sean D. & Diebold, Francis X., 2009. "Stock Returns and Expected Business Conditions: Half a Century of Direct Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 266-278.
    2. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    3. Refet S. Gürkaynak & Burçin Kisacikoğlu & Jonathan H. Wright, 2020. "Missing Events in Event Studies: Identifying the Effects of Partially Measured News Surprises," American Economic Review, American Economic Association, vol. 110(12), pages 3871-3912, December.
    4. Refet S. Gürkaynak & Jonathan H. Wright, 2013. "Identification and Inference Using Event Studies," Manchester School, University of Manchester, vol. 81, pages 48-65, September.
    5. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    7. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    8. Gilbert, Thomas & Scotti, Chiara & Strasser, Georg & Vega, Clara, 2017. "Is the intrinsic value of a macroeconomic news announcement related to its asset price impact?," Journal of Monetary Economics, Elsevier, vol. 92(C), pages 78-95.
    9. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alena Audzeyeva & Xu Wang, 2023. "Fundamentals, real-time uncertainty and CDS index spreads," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 1-33, July.
    2. Caruso, Alberto, 2019. "Macroeconomic news and market reaction: Surprise indexes meet nowcasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1725-1734.
    3. Christoph E. Boehm & T. Niklas Kroner, 2020. "The US, Economic News, and the Global Financial Cycle," Working Papers 677, Research Seminar in International Economics, University of Michigan.
    4. Conrad, Christian & Glas, Alexander, 2018. "‘Déjà vol’ revisited: Survey forecasts of macroeconomic variables predict volatility in the cross-section of industry portfolios," Working Papers 0655, University of Heidelberg, Department of Economics.
    5. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    6. Juan Angel Garcia & Sebastian Werner, 2018. "Inflation News and Euro Area Inflation Expectations," IMF Working Papers 2018/167, International Monetary Fund.
    7. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    8. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    9. Neuhierl, Andreas & Weber, Michael, 2019. "Monetary policy communication, policy slope, and the stock market," Journal of Monetary Economics, Elsevier, vol. 108(C), pages 140-155.
    10. Michael Ehrmann & Paul Hubert, 2022. "Information Acquisition ahead of Monetary Policy Announcements," Working papers 897, Banque de France.
    11. Marcello Pericoli & Giovanni Veronese, 2015. "Forecaster heterogeneity, surprises and financial markets," Temi di discussione (Economic working papers) 1020, Bank of Italy, Economic Research and International Relations Area.
    12. Fatum, Rasmus & Hattori, Takahiro & Yamamoto, Yohei, 2023. "Reserves and risk: Evidence from China," Journal of International Money and Finance, Elsevier, vol. 134(C).
    13. Ehrmann, Michael & Fratzscher, Marcel, 2005. "Exchange rates and fundamentals: new evidence from real-time data," Journal of International Money and Finance, Elsevier, vol. 24(2), pages 317-341, March.
    14. Amira, Khaled & Taamouti, Abderrahim & Tsafack, Georges, 2011. "What drives international equity correlations? Volatility or market direction?," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 1234-1263, October.
    15. Andras Lengyel & Massimo Giuliodori, 2022. "Demand Shocks for Public Debt in the Eurozone," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(7), pages 1997-2028, October.
    16. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    18. Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024. "Doubly multiplicative error models with long- and short-run components," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    19. Mikael C. Bergbrant & Patrick J. Kelly, 2016. "Macroeconomic Expectations and the Size, Value, and Momentum Factors," Financial Management, Financial Management Association International, vol. 45(4), pages 809-844, December.
    20. Linda S. Goldberg & Christian Grisse, 2013. "Time variation in asset price responses to macro announcements," Working Papers 2013-11, Swiss National Bank.

    More about this item

    Keywords

    event study; long- and short-term volatility; macroeconomic announcements; stock market response; time-varying risk premia; volatility feedback effect;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:awi:wpaper:0739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gabi Rauscher (email available below). General contact details of provider: https://edirc.repec.org/data/awheide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.