IDEAS home Printed from https://ideas.repec.org/p/awe/wpaper/461.html
   My bibliography  Save this paper

Forecasting Core Inflation in India: A Four-Step Approach

Author

Listed:
  • Rishabh Choudhary
  • Chetan Ghate
  • Md Arbaj Meman

    (Institute of Economic Growth, Delhi)

Abstract

We propose a novel approach to forecasting core inflation in India, whose average contribution to headline inflation has been about 55 percent since January 2016. Our approach involves using the dis-aggregated components of core inflation, as well as the construction of a demand index using high frequency (HF) indicators. We find that individually forecasting and then aggregating core CPI components improves the short-term forecasting accuracy of core inflation. However, forecasting aggregate core inflation directly is more effective for longer horizons. We estimate a demand index using high frequency indicators. We find that the inclusion of the demand index and other co-variates enhances forecasting efficacy by capturing demand-side factors specific to the Indian economy. We also find that an accurate specification of the dis-aggregate components model contributes to maximizing prediction accuracy.

Suggested Citation

  • Rishabh Choudhary & Chetan Ghate & Md Arbaj Meman, 2023. "Forecasting Core Inflation in India: A Four-Step Approach," IEG Working Papers 461, Institute of Economic Growth.
  • Handle: RePEc:awe:wpaper:461
    as

    Download full text from publisher

    File URL: https://iegindia.org/upload/publication/Workpap/WP461.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael P. Clements & David F. Hendry, 2002. "Modelling methodology and forecast failure," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 319-344, June.
    2. Kausik Chaudhuri & Saumitra N. Bhaduri, 2019. "Inflation Forecast: Just use the Disaggregate or Combine it with the Aggregate," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 331-343, June.
    3. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    4. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muellbauer, John & Aron, Janine & Sebudde, Rachel, 2015. "Inflation forecasting models for Uganda: is mobile money relevant?," CEPR Discussion Papers 10739, C.E.P.R. Discussion Papers.
    2. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    3. Carrera, Cesar & Ledesma, Alan, 2015. "Proyección de la inflación agregada con modelos de vectores autorregresivos bayesianos," Working Papers 2015-003, Banco Central de Reserva del Perú.
    4. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
    5. Janine Aron & John Muellbauer, 2008. "New methods for forecasting inflation and its sub-components: application to the USA," Economics Series Working Papers 406, University of Oxford, Department of Economics.
    6. Cesar Carrera & Alan Ledesma, 2015. "Aggregate Inflation Forecast with Bayesian Vector Autoregressive Models," Working Papers 50, Peruvian Economic Association.
    7. WAN, Shui-Ki & WANG, Shin-Huei & WOO, Chi-Keung, 2012. "Total tourist arrival forecast: aggregation vs. disaggregation," LIDAM Discussion Papers CORE 2012039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    9. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    10. Ivan Kitov & Oleg Kitov, 2013. "Does Banque de France control inflation and unemployment?," Papers 1311.1097, arXiv.org.
    11. Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," SciencePo Working papers Main hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," PSE-Ecole d'économie de Paris (Postprint) hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," PSE Working Papers hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," Post-Print hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," Working Papers hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," SciencePo Working papers Main hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," PSE-Ecole d'économie de Paris (Postprint) hal-03612850, HAL.
    12. Brüggemann, Ralf & Lütkepohl, Helmut, 2013. "Forecasting contemporaneous aggregates with stochastic aggregation weights," International Journal of Forecasting, Elsevier, vol. 29(1), pages 60-68.
    13. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    14. Kirstin Hubrich & Guenter Beck & Massimiliano Marcellino, 2000. "Regional Inflation Dynamics within and across Euro Area Countries and a Comparison with the US," Regional and Urban Modeling 283600037, EcoMod.
    15. Ascari, Guido & Rankin, Neil, 2007. "Perpetual youth and endogenous labor supply: A problem and a possible solution," Journal of Macroeconomics, Elsevier, vol. 29(4), pages 708-723, December.
    16. Ivan, Kitov, 2006. "Exact prediction of inflation in the USA," MPRA Paper 2735, University Library of Munich, Germany.
    17. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    18. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    19. Norman Swanson & Oleg Korenok, 2006. "The Incremental Predictive Information Associated with Using Theoretical New Keynesian DSGE Models Versus Simple Linear Alternatives," Departmental Working Papers 200615, Rutgers University, Department of Economics.
    20. Szafranek, Karol, 2017. "Flattening of the New Keynesian Phillips curve: Evidence for an emerging, small open economy," Economic Modelling, Elsevier, vol. 63(C), pages 334-348.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:awe:wpaper:461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iegggin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.