IDEAS home Printed from https://ideas.repec.org/p/aub/autbar/960.16.html
   My bibliography  Save this paper

Neural Nets for Indirect Inference

Author

Listed:
  • Michael Creel

Abstract

For simulable models, neural networks are used to approximate the limited information poste- rior mean, which conditions on a vector of statistics, rather than on the full sample. Because the model is simulable, training and testing samples may be generated with sizes large enough to train well a net that is large enough, in terms of number of hidden layers and neurons, to learn the limited information posterior mean with good accuracy. Targeting the limited information posterior mean using neural nets is simpler, faster, and more successful than is targeting the full information posterior mean, which conditions on the observed sample. The output of the trained net can be used directly as an estimator of the model?s parameters, or as an input to subsequent classical or Bayesian indirect inference estimation. Examples of indirect inference based on the output of the net include a small dynamic stochastic general equilibrium model, estimated using both classical indirect inference methods and approximate Bayesian computing (ABC) methods, and a continuous time jump-diffusion model for stock index returns, estimated using ABC.

Suggested Citation

  • Michael Creel, 2016. "Neural Nets for Indirect Inference," UFAE and IAE Working Papers 960.16, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC), revised 18 Jul 2016.
  • Handle: RePEc:aub:autbar:960.16
    as

    Download full text from publisher

    File URL: http://pareto.uab.es/wp/2016/96016.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    2. Michael Creel & Dennis Kristensen, "undated". "Indirect Likelihood Inference," Working Papers 558, Barcelona School of Economics.
    3. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    4. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    5. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    6. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    7. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2009. "Choosing instrumental variables in conditional moment restriction models," Journal of Econometrics, Elsevier, vol. 152(1), pages 28-36, September.
    8. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    9. Creel, Michael & Kristensen, Dennis, 2016. "On selection of statistics for approximate Bayesian computing (or the method of simulated moments)," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Creel, Michael, 2017. "Neural nets for indirect inference," Econometrics and Statistics, Elsevier, vol. 2(C), pages 36-49.
    2. Creel, Michael & Kristensen, Dennis, 2016. "On selection of statistics for approximate Bayesian computing (or the method of simulated moments)," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
    3. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
    4. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    5. Forneron, Jean-Jacques & Ng, Serena, 2018. "The ABC of simulation estimation with auxiliary statistics," Journal of Econometrics, Elsevier, vol. 205(1), pages 112-139.
    6. Ghysels, Eric & Guay, Alain, 2004. "Testing For Structural Change In The Presence Of Auxiliary Models," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1168-1202, December.
    7. Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018. "Generalized indirect inference for discrete choice models," Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
    8. Frazier, David T. & Oka, Tatsushi & Zhu, Dan, 2019. "Indirect inference with a non-smooth criterion function," Journal of Econometrics, Elsevier, vol. 212(2), pages 623-645.
    9. Jonathan Chassot & Michael Creel, 2023. "Constructing Efficient Simulated Moments Using Temporal Convolutional Networks," Working Papers 1412, Barcelona School of Economics.
    10. Jean-Jacques Forneron, 2019. "A Scrambled Method of Moments," Papers 1911.09128, arXiv.org.
    11. Michael Creel & Dennis Kristensen, 2013. "Indirect Likelihood Inference (revised)," UFAE and IAE Working Papers 931.13, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    12. Otero, Karina V., 2016. "Intensity of default in sovereign bonds: Estimation of an unobservable process," MPRA Paper 86782, University Library of Munich, Germany.
    13. Ramdan Dridi & Eric Renault, 2000. "Semi-Parametric Indirect Inference," STICERD - Econometrics Paper Series 392, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Di Iorio, Francesca & Calzolari, Giorgio, 2006. "Discontinuities in indirect estimation: An application to EAR models," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2124-2136, April.
    15. Vincent Boucher, 2017. "The Estimation of Network Formation Games with Positive Spillovers," Cahiers de recherche 1710, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    16. Santos, Manuel S., 2004. "Simulation-based estimation of dynamic models with continuous equilibrium solutions," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 465-491, June.
    17. Ramdan Dridi, 2000. "Simulated Asymptotic Least Squares Theory," STICERD - Econometrics Paper Series 396, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    18. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    19. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    20. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    21. Tauchen, George E., 1995. "New Minimum Chi-Square Methods in Empirical Finance," Working Papers 95-42, Duke University, Department of Economics.

    More about this item

    Keywords

    neural networks; indirect inference; approximate Bayesian computing; machine learning; DSGE; jump-diffusion;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aub:autbar:960.16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Xavier Vila (email available below). General contact details of provider: https://edirc.repec.org/data/ufuabes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.