IDEAS home Printed from https://ideas.repec.org/p/att/wimass/9408.html
   My bibliography  Save this paper

Simulaneity with Downward Sloping Demand

Author

Listed:
  • Manski, C.F.

Abstract

This paper considers anew the simultaneity problem that arises when observations of transactions are used to study the demand behavior of price- taking consumers. Simultaneity is shown to be a problem of censored outcomes. This fact is used to obtain a basic negative finding on identification in the absence of prior information on the structure of demand or the process of price determination. Then the assumption of downward sloping demand is imposed. The main result of the paper is a proposition showing that this assumption has considerable identifying power. An empirical illustration is provided.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Manski, C.F., 1994. "Simulaneity with Downward Sloping Demand," Working papers 9408, Wisconsin Madison - Social Systems.
  • Handle: RePEc:att:wimass:9408
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, January.
    3. Manski, C.F., 1990. "The Selection Problem," Working papers 90-12, Wisconsin Madison - Social Systems.
    4. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, January.
    5. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    6. Manski, C.F. & Sandefur, G.D. & Mclanahan, S. & Powers, D., 1990. "Alternative Estimates Of The Effect Of Family Stucture During Adolescence On Hight School Graduation," Working papers 90-31, Wisconsin Madison - Social Systems.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. Heckman & Edward J. Vytlacil, 2000. "Instrumental Variables, Selection Models, and Tight Bounds on the Average Treatment Effect," NBER Technical Working Papers 0259, National Bureau of Economic Research, Inc.
    2. Charles F. Manski & John Newman & John V. Pepper, "undated". "Using Performance Standards to Evaluate Social Programs with Incomplete Outcome Data: General Issues and Application to a Higher Education Block Grant Program," IPR working papers 00-1, Institute for Policy Resarch at Northwestern University.
    3. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    4. Vazquez-Alvarez, R. & Melenberg, B. & van Soest, A.H.O., 1999. "Nonparametric Bounds on the Income Distribution in the Presence of Item Nonresponse," Other publications TiSEM d37fb6a5-2075-42b2-b0b4-5, Tilburg University, School of Economics and Management.
    5. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.
    6. Dimitris Christelis & Dimitris Georgarakos & Tullio Jappelli & Geoff Kenny, 2020. "The Covid-19 Crisis and Consumption: Survey Evidence from Six EU Countries," Working Papers 2020_31, Business School - Economics, University of Glasgow.
    7. Charles F. Manski, 2010. "Unlearning and Discovery," The American Economist, Sage Publications, vol. 55(1), pages 9-18, May.
    8. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    9. Michael Lechner & Blaise Melly, 2007. "Earnings Effects of Training Programs," University of St. Gallen Department of Economics working paper series 2007 2007-28, Department of Economics, University of St. Gallen.
    10. Charles F. Manski & John Newman & John V. Pepper, 2002. "Using Performance Standards to Evaluate Social Programs with Incomplete Outcome Data," Evaluation Review, , vol. 26(4), pages 355-381, August.
    11. Marco Francesconi, 2008. "Adult Outcomes for Children of Teenage Mothers," Scandinavian Journal of Economics, Wiley Blackwell, vol. 110(1), pages 93-117, March.
    12. Grafova, Irina B. & Freedman, Vicki A. & Lurie, Nicole & Kumar, Rizie & Rogowski, Jeannette, 2014. "The difference-in-difference method: Assessing the selection bias in the effects of neighborhood environment on health," Economics & Human Biology, Elsevier, vol. 13(C), pages 20-33.
    13. Michael Lechner & Blaise Melly, 2010. "Partial Idendification of Wage Effects of Training Programs," Working Papers 2010-8, Brown University, Department of Economics.
    14. Manski, Charles F., 2000. "Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice," Journal of Econometrics, Elsevier, vol. 95(2), pages 415-442, April.
    15. Mingliang Li & Dale J. Poirier & Justin L. Tobias, 2004. "Do dropouts suffer from dropping out? Estimation and prediction of outcome gains in generalized selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 203-225.
    16. Vazquez-Alvarez, R. & Melenberg, B. & van Soest, A.H.O., 2001. "Nonparametric Bounds in the Presence of Item Nonresponse, Unfolding Brackets and Anchoring," Discussion Paper 2001-67, Tilburg University, Center for Economic Research.
    17. Vazquez-Alvarez, R. & Melenberg, B. & van Soest, A.H.O., 1999. "Nonparametric Modeling of the Anchoring Effect in an Unfolding Bracket Design," Discussion Paper 1999-115, Tilburg University, Center for Economic Research.
    18. Charles F. Manski, 2003. "Identification Problems in the Social Sciences and Everyday Life," Southern Economic Journal, John Wiley & Sons, vol. 70(1), pages 11-21, July.
    19. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    20. Fan, Yanqin & Park, Sang Soo, 2014. "Nonparametric inference for counterfactual means: Bias-correction, confidence sets, and weak IV," Journal of Econometrics, Elsevier, vol. 178(P1), pages 45-56.

    More about this item

    Keywords

    pricing ; consumption;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:att:wimass:9408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ailsenne Sumwalt (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.