IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0611048.html
   My bibliography  Save this paper

Multiple time scales and the empirical models for stochastic volatility

Author

Listed:
  • G. L. Buchbinder
  • K. M. Chistilin

Abstract

The most common stochastic volatility models such as the Ornstein-Uhlenbeck (OU), the Heston, the exponential OU (ExpOU) and Hull-White models define volatility as a Markovian process. In this work we check of the applicability of the Markovian approximation at separate times scales and will try to answer the question which of the stochastic volatility models indicated above is the most realistic. To this end we consider the volatility at both short (a few days) and long (a few months)time scales as a Markovian process and estimate for it the coefficients of the Kramers-Moyal expansion using the data for Dow-Jones Index. It has been found that the empirical data allow to take only the first two coefficients of expansion to be non zero that define form of the volatility stochastic differential equation of Ito. It proved to be that for the long time scale the empirical data support the ExpOU model. At the short time scale the empirical model coincides with ExpOU model for the small volatility quantities only.

Suggested Citation

  • G. L. Buchbinder & K. M. Chistilin, 2006. "Multiple time scales and the empirical models for stochastic volatility," Papers physics/0611048, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0611048
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0611048
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renner, Ch. & Peinke, J. & Friedrich, R., 2001. "Evidence of Markov properties of high frequency exchange rate data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 499-520.
    2. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    3. C. Renner & J. Peinke & R. Friedrich, 2001. "Markov properties of high frequency exchange rate data," Papers cond-mat/0102494, arXiv.org, revised Apr 2001.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
    2. Jun-ichi Maskawa & Koji Kuroda, 2020. "Model of continuous random cascade processes in financial markets," Papers 2010.12270, arXiv.org.
    3. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    4. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    5. Ausloos, Marcel & Ivanova, Kristinka & Siwy, Zuzanna, 2004. "Searching for self-similarity in switching time and turbulent cascades in ion transport through a biochannel. A time delay asymmetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 319-333.
    6. Hirata, Yoshito & Aihara, Kazuyuki, 2012. "Timing matters in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 760-766.
    7. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    8. Rajabzadeh, Yalda & Rezaie, Amir Hossein & Amindavar, Hamidreza, 2016. "A robust nonparametric framework for reconstruction of stochastic differential equation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 294-304.
    9. Oya, Shunsuke & Aihara, Kazuyuki & Hirata, Yoshito, 2014. "An absolute measure for a key currency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 15-23.
    10. Wolfgang Hardle & Torsten Kleinow & Alexander Korostelev & Camille Logeay & Eckhard Platen, 2008. "Semiparametric diffusion estimation and application to a stock market index," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 81-92.
    11. Andria, Joseph & di Tollo, Giacomo & Kalda, Jaan, 2022. "The predictive power of power-laws: An empirical time-arrow based investigation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    13. DAI & Feng QIN & Zifu, 2005. "DF Structure Models for Options Pricing," The IUP Journal of Applied Economics, IUP Publications, vol. 0(6), pages 61-77, November.
    14. Linden, Mikael, 2005. "Estimating the distribution of volatility of realized stock returns and exchange rate changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 573-583.
    15. Mikhail Martynov & Olga Rozanova, 2010. "A certain estimate of volatility through return for stochastic volatility models," Papers 1009.5129, arXiv.org, revised Jul 2011.
    16. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
    17. Feng Dai & Ling Liang, 2005. "The Advance in Partial Distribution: A New Mathematical Tool for Economic Management," EERI Research Paper Series EERI_RP_2005_04, Economics and Econometrics Research Institute (EERI), Brussels.
    18. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    19. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    20. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0611048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.