IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0702409.html
   My bibliography  Save this paper

Market free lunch and large financial markets

Author

Listed:
  • Irene Klein

Abstract

The main result of the paper is a version of the fundamental theorem of asset pricing (FTAP) for large financial markets based on an asymptotic concept of no market free lunch for monotone concave preferences. The proof uses methods from the theory of Orlicz spaces. Moreover, various notions of no asymptotic arbitrage are characterized in terms of no asymptotic market free lunch; the difference lies in the set of utilities. In particular, it is shown directly that no asymptotic market free lunch with respect to monotone concave utilities is equivalent to no asymptotic free lunch. In principle, the paper can be seen as the large financial market analogue of [Math. Finance 14 (2004) 351--357] and [Math. Finance 16 (2006) 583--588].

Suggested Citation

  • Irene Klein, 2007. "Market free lunch and large financial markets," Papers math/0702409, arXiv.org.
  • Handle: RePEc:arx:papers:math/0702409
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0702409
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irene Klein, 2006. "A Comment On Market Free Lunch And Free Lunch," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 583-588, July.
    2. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    3. Sen, P. K. & Tsong, Y., 1980. "On functional central limit theorems for certain continuous time parameter stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 10(3), pages 371-378, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badics, Tamás, 2011. "Az arbitrázs preferenciákkal történő karakterizációjáról [On the characterization of arbitrage in terms of preferences]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 727-742.
    2. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    3. Fathallah, Ramzi & Carney, Michael, 2024. "The business family as an institutional arbitrageur: Internationalization across institutional contexts," Journal of World Business, Elsevier, vol. 59(2).
    4. Mas-Colell, Andreu & Zame, William R., 1996. "The existence of security market equilibrium with a non-atomic state space," Journal of Mathematical Economics, Elsevier, vol. 26(1), pages 63-84.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    7. Cuong Van & Frank Page & Myrna Wooders, 2007. "Risky arbitrage, asset prices, and externalities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(3), pages 475-491, December.
    8. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    9. Patrick Beissner, 2019. "Coherent-Price Systems and Uncertainty-Neutral Valuation," Risks, MDPI, vol. 7(3), pages 1-18, September.
    10. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    11. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    12. Constantinos Kardaras, 2009. "Finitely additive probabilities and the Fundamental Theorem of Asset Pricing," Papers 0911.5503, arXiv.org.
    13. Tourky, Rabee, 1999. "Production equilibria in locally proper economies with unbounded and unordered consumers," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 303-315, November.
    14. A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    15. Nicole El Karoui & Stéphane Loisel & Jean-Luc Prigent & Julien Vedani, 2017. "Market inconsistencies of the market-consistent European life insurance economic valuations: pitfalls and practical solutions," Post-Print hal-01242023, HAL.
    16. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    17. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    18. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Ben R. Craig & Joseph G. Haubrich, 2003. "Pricing kernels, inflation, and the term structure of interest rates," Working Papers (Old Series) 0308, Federal Reserve Bank of Cleveland.
    20. Hansen, Lars Peter & Jagannathan, Ravi, 1997. "Assessing Specification Errors in Stochastic Discount Factor Models," Journal of Finance, American Finance Association, vol. 52(2), pages 557-590, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0702409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.